30 research outputs found
Exploring Halo Substructure with Giant Stars. XV. Discovery of a Connection between the Monoceros Ring and the Triangulum-Andromeda Overdensity?
Thanks to modern sky surveys, over twenty stellar streams and overdensity
structures have been discovered in the halo of the Milky Way. In this paper, we
present an analysis of spectroscopic observations of individual stars from one
such structure, "A13", first identified as an overdensity using the M giant
catalog from the Two Micron All-Sky Survey. Our spectroscopic observations show
that stars identified with A13 have a velocity dispersion of 40
, implying that it is a genuine coherent structure rather
than a chance super-position of random halo stars. From its position on the
sky, distance (15~kpc heliocentric), and kinematical properties, A13 is
likely to be an extension of another low Galactic latitude substructure -- the
Galactic Anticenter Stellar Structure (also known as the Monoceros Ring) --
towards smaller Galactic longitude and farther distance. Furthermore, the
kinematics of A13 also connect it with another structure in the southern
Galactic hemisphere -- the Triangulum-Andromeda overdensity. We discuss these
three connected structures within the context of a previously proposed scenario
that one or all of these features originate from the disk of the Milky Way.Comment: 12 pages, 9 figures. Accepted for publication in Ap
High-resolution, H band Spectroscopy of Be Stars with SDSS-III/APOGEE: I. New Be Stars, Line Identifications, and Line Profiles
APOGEE has amassed the largest ever collection of multi-epoch,
high-resolution (R~22,500), H-band spectra for B-type emission line (Be) stars.
The 128/238 APOGEE Be stars for which emission had never previously been
reported serve to increase the total number of known Be stars by ~6%. We focus
on identification of the H-band lines and analysis of the emission peak
velocity separations (v_p) and emission peak intensity ratios (V/R) of the
usually double-peaked H I and non-hydrogen emission lines. H I Br11 emission is
found to preferentially form in the circumstellar disks at an average distance
of ~2.2 stellar radii. Increasing v_p toward the weaker Br12--Br20 lines
suggests these lines are formed interior to Br11. By contrast, the observed IR
Fe II emission lines present evidence of having significantly larger formation
radii; distinctive phase lags between IR Fe II and H I Brackett emission lines
further supports that these species arise from different radii in Be disks.
Several emission lines have been identified for the first time including
~16895, a prominent feature in the spectra for almost a fifth of the sample
and, as inferred from relatively large v_p compared to the Br11-Br20, a tracer
of the inner regions of Be disks. Unlike the typical metallic lines observed
for Be stars in the optical, the H-band metallic lines, such as Fe II 16878,
never exhibit any evidence of shell absorption, even when the H I lines are
clearly shell-dominated. The first known example of a quasi-triple-peaked Br11
line profile is reported for HD 253659, one of several stars exhibiting intra-
and/or extra-species V/R and radial velocity variation within individual
spectra. Br11 profiles are presented for all discussed stars, as are full
APOGEE spectra for a portion of the sample.Comment: accepted in A
Discovery of a Dynamical Cold Point in the Heart of the Sagittarius dSph Galaxy with Observations from the APOGEE Project
The dynamics of the core of the Sagittarius (Sgr) dwarf spheroidal (dSph)
galaxy are explored using high-resolution (R~22,500), H-band, near-infrared
spectra of over 1,000 giant stars in the central 3 deg^2 of the system, of
which 328 are identified as Sgr members. These data, among some of the earliest
observations from the SDSS-III/Apache Point Observatory Galactic Evolution
Experiment (APOGEE) and the largest published sample of high resolution Sgr
dSph spectra to date, reveal a distinct gradient in the velocity dispersion of
Sgr from 11-14 km/s for radii >0.8 degrees from center to a dynamical cold
point of 8 km/s in the Sgr center --- a trend differing from that found in
previous kinematical analyses of Sgr over larger scales that suggest a more or
less flat dispersion profile at these radii. Well-fitting mass models with
either cored and cusped dark matter distributions can be found to match the
kinematical results, although the cored profile succeeds with significantly
more isotropic stellar orbits than required for a cusped profile. It is
unlikely that the cold point reflects an unusual mass distribution. The
dispersion gradient may arise from variations in the mixture of populations
with distinct kinematics within the dSph; this explanation is suggested (e.g.,
by detection of a metallicity gradient across similar radii), but not
confirmed, by the present data. Despite these remaining uncertainties about
their interpretation, these early test data (including some from instrument
commissioning) demonstrate APOGEE's usefulness for precision dynamical studies,
even for fields observed at extreme airmasses.Comment: 15 pages, 3 figure
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data
Recommended from our members
The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data
Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
