178 research outputs found

    TSPY1 copy number variation influences spermatogenesis and shows differences among Y lineages.

    Get PDF
    CONTEXT: TSPY1 is a tandemly-repeated gene on the human Y chromosome forming an array of approximately 21–35 copies. The testicular expression pattern and the inferred function of the TSPY1 protein suggest possible involvement in spermatogenesis. However, data are scarce on TSPY1 copy number variation in different Y lineages and its role in spermatogenesis. OBJECTIVES: We sought to define: 1) the extent of TSPY1 copy number variation within and among Y chromosome haplogroups; and 2) the role of TSPY1 dosage in spermatogenic efficiency. MATERIALS AND METHODS: A total of 154 idiopathic infertile men and 130 normozoospermic controls from Central Italy were analyzed. We used a quantitative PCR assay to measure TSPY1 copy number and also defined Y haplogroups in all subjects. RESULTS: We provide evidence that TSPY1 copy number shows substantial variation among Y haplogroups and thus that population stratification does represent a potential bias in case-control association studies. We also found: 1) a significant positive correlation between TSPY1 copy number and sperm count (P < 0.001); 2) a significant difference in mean TSPY1 copy number between patients and controls (28.4 ± 8.3 vs. 33.9 ± 10.7; P < 0.001); and 3) a 1.5-fold increased risk of abnormal sperm parameters in men with less than 33 copies (P < 0.001). CONCLUSIONS: TSPY copy number variation significantly influences spermatogenic efficiency. Low TSPY1 copy number is a new risk factor for male infertility with potential clinical consequences

    Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations

    Get PDF
    Seasonal variations in seawater temperature require extensive metabolic acclimatization in cold-blooded organisms inhabiting the coastal waters of Europe. Given the energetic costs of acclimatization, differences in adaptive capacity to climatic conditions are to be expected among distinct populations of species that are distributed over a wide geographic range. We studied seasonal variations in the metabolic adjustments of two very common bivalve taxa at European scale. To this end we sampled 16 populations of Mytilus spp. and 10 Macoma balthica populations distributed from 39° to 69°N. The results from this large-scale comprehensive comparison demonstrated seasonal cycles in metabolic rates which were maximized during winter and springtime, and often reduced in the summer and autumn. Studying the sensitivity of metabolic rates to thermal variations, we found that a broad range of Q10 values occurred under relatively cold conditions. As habitat temperatures increased the range of Q10 narrowed, reaching a bottleneck in southern marginal populations during summer. For Mytilus spp., genetic-group-specific clines and limits on Q10 values were observed at temperatures corresponding to the maximum climatic conditions these geographic populations presently experience. Such specific limitations indicate differential thermal adaptation among these divergent groups. They may explain currently observed migrations in mussel distributions and invasions. Our results provide a practical framework for the thermal ecophysiology of bivalves, the assessment of environmental changes due to climate change and its impact on (and consequences for) aquaculture

    Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic ridge

    Get PDF
    Dispersal plays a fundamental role in the evolution and persistence of species, and especially for species inhabiting extreme, ephemeral and highly fragmented habitats as hydrothermal vents. The Mid-Atlantic Ridge endemic shrimp species Rimicaris exoculata was studied using microsatellite markers to infer connectivity along the 7100-Km range encompassing the sampled sites. Astonishingly, no genetic differentiation was found between individuals from the different geographic origins, supporting a scenario of widespread large-scale dispersal despite the habitat distance and fragmentation. We hypothesize that delayed metamorphosis associated to temperature differences or even active directed migration dependent on physical and/or chemical stimuli could explain these results and warrant further studies on adaptation and dispersal mechanisms

    Test beam performance measurements for the Phase I upgrade of the CMS pixel detector

    Get PDF
    A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is (99.95 ± 0.05) %, while the intrinsic spatial resolutions are (4.80 ± 0.25) μm and (7.99 ± 0.21) μm along the 100 μm and 150 μm pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.Peer reviewe

    Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    Get PDF
    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 μ\mum thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 310153 \cdot 10^{15} neq/cm2^2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    Get PDF
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of pT > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of pT = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in pT, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    Get PDF
    The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2^{2} of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 1015^{15} neq_{eq}/cm2^{2}. The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm
    corecore