59 research outputs found

    Flavor Physics in an SO(10) Grand Unified Model

    Get PDF
    In supersymmetric grand-unified models, the lepton mixing matrix can possibly affect flavor-changing transitions in the quark sector. We present a detailed analysis of a model proposed by Chang, Masiero and Murayama, in which the near-maximal atmospheric neutrino mixing angle governs large new b -> s transitions. Relating the supersymmetric low-energy parameters to seven new parameters of this SO(10) GUT model, we perform a correlated study of several flavor-changing neutral current (FCNC) processes. We find the current bound on B(tau -> mu gamma) more constraining than B(B -> X_s gamma). The LEP limit on the lightest Higgs boson mass implies an important lower bound on tan beta, which in turn limits the size of the new FCNC transitions. Remarkably, the combined analysis does not rule out large effects in B_s-B_s-bar mixing and we can easily accomodate the large CP phase in the B_s-B_s-bar system which has recently been inferred from a global analysis of CDF and DO data. The model predicts a particle spectrum which is different from the popular Constrained Minimal Supersymmetric Standard Model (CMSSM). B(tau -> mu gamma) enforces heavy masses, typically above 1 TeV, for the sfermions of the degenerate first two generations. However, the ratio of the third-generation and first-generation sfermion masses is smaller than in the CMSSM and a (dominantly right-handed) stop with mass below 500 GeV is possible.Comment: 44 pages, 5 figures. Footnote and references added, minor changes, Fig. 2 corrected; journal versio

    Cosmic Ray Anomalies from the MSSM?

    Get PDF
    The recent positron excess in cosmic rays (CR) observed by the PAMELA satellite may be a signal for dark matter (DM) annihilation. When these measurements are combined with those from FERMI on the total (e++e−e^++e^-) flux and from PAMELA itself on the pˉ/p\bar p/p ratio, these and other results are difficult to reconcile with traditional models of DM, including the conventional mSUGRA version of Supersymmetry even if boosts as large as 103−410^{3-4} are allowed. In this paper, we combine the results of a previously obtained scan over a more general 19-parameter subspace of the MSSM with a corresponding scan over astrophysical parameters that describe the propagation of CR. We then ascertain whether or not a good fit to this CR data can be obtained with relatively small boost factors while simultaneously satisfying the additional constraints arising from gamma ray data. We find that a specific subclass of MSSM models where the LSP is mostly pure bino and annihilates almost exclusively into τ\tau pairs comes very close to satisfying these requirements. The lightest τ~\tilde \tau in this set of models is found to be relatively close in mass to the LSP and is in some cases the nLSP. These models lead to a significant improvement in the overall fit to the data by an amount Δχ2∌1/\Delta \chi^2 \sim 1/dof in comparison to the best fit without Supersymmetry while employing boosts ∌100\sim 100. The implications of these models for future experiments are discussed.Comment: 57 pages, 31 figures, references adde

    Singlet extensions of the standard model at LHC Run 2: benchmarks and comparison with the NMSSM

    Get PDF
    The Complex singlet extension of the Standard Model (CxSM) is the simplest extension that provides scenarios for Higgs pair production with different masses. The model has two interesting phases: the dark matter phase, with a Standard Model-like Higgs boson, a new scalar and a dark matter candidate; and the broken phase, with all three neutral scalars mixing. In the latter phase Higgs decays into a pair of two different Higgs bosons are possible. In this study we analyse Higgs-to-Higgs decays in the framework of singlet extensions of the Standard Model (SM), with focus on the CxSM. After demonstrating that scenarios with large rates for such chain decays are possible we perform a comparison between the NMSSM and the CxSM. We find that, based on Higgs-to-Higgs decays, the only possibility to distinguish the two models at the LHC run 2 is through final states with two different scalars. This conclusion builds a strong case for searches for final states with two different scalars at the LHC run 2. Finally, we propose a set of benchmark points for the real and complex singlet extensions to be tested at the LHC run 2. They have been chosen such that the discovery prospects of the involved scalars are maximised and they fulfil the dark matter constraints. Furthermore, for some of the points the theory is stable up to high energy scales. For the computation of the decay widths and branching ratios we developed the Fortran code sHDECAY, which is based on the implementation of the real and complex singlet extensions of the SM in HDECAY

    On-shell neutral Higgs bosons in the NMSSM with complex parameters

    Get PDF
    The Next-to-Minimal Supersymmetric Standard model (NMSSM) appears as an interesting candidate for the interpretation of the Higgs-measurement at the LHC and as a rich framework embedding physics beyond the Standard Model. We consider the renormalization of the Higgs sector of this model in its CP\mathcal{CP}-violating version, and propose a renormalization scheme for the calculation of on-shell Higgs masses. Moreover, the connection between the physical states and the tree-level ones is no longer trivial at the radiative level: a proper description of the corresponding transition thus proves necessary in order to calculate Higgs production and decays at a consistent loop order. After discussing these formal aspects, we compare the results of our mass calculation to the output of existing tools. We also study the relevance of the on-shell transition-matrix in the example of the hi→τ+τ−h_i \to \tau^+ \tau^- width. We find deviations between our full prescription and popular approximations that can exceed 10%10\%.Comment: 28 pages, 11 figure

    Search for the standard model Higgs boson in the diphoton decay channel with 4.9fb -1 of pp collision data at √s=7TeV with atlas

    Get PDF
    A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9  fb-1 collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of √s=7  TeV. In the diphoton mass range 110–150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110–150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113–115 GeV and 134.5–136 GeV

    Search for the standard model Higgs boson in the diphoton decay channel with 4.9fb -1 of pp collision data at √s=7TeV with atlas

    Get PDF
    A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9  fb-1 collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of √s=7  TeV. In the diphoton mass range 110–150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110–150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113–115 GeV and 134.5–136 GeV

    Butyrate stimulates the early process of the osteogenic differentiation but inhibits the biomineralization in dental follicle cells (DFCs)

    Get PDF
    Dental stem cells, especially dental follicle cells (DFCs) as precursor cells for the periodontium have interesting prospects for regenerative dentistry. During periodontitis, butyrate as a bacterial metabolite and inflammatory agent is often found in millimolar concentrations in periodontal pockets. This study evaluates the effects of butyrate on the proliferation and osteogenic differentiation of DFCs. We assessed cell viability/proliferation (BCA assay) and osteogenic differentiation (ALP activity, alizarin staining and RT PCR) of DFCs in vitro after butyrate supplementation. Butyrate concentrations of 20 mM or higher are toxic for DFCs. At a non-toxic concentration, butyrate promotes the expression of alkaline phosphatase and collagen type-1 but inhibits the formation of calcified nodules and the induction of RUNX2 and osteocalcin under osteogenic differentiation conditions. In conclusion, DFCs are resistant to physiological high concentrations of butyrate. Butyrate facilitates the osteogenic differentiation of DFCs in early stages but inhibits calcification at later stages of the differentiation process

    Compound effect of EHD and surface roughness in pool boiling and CHF with R-123

    Get PDF
    This article is a post-print version of the fianl published article which may be accessed at the link below.Saturated pool boiling of R-123 at 1 bar, including the critical heat flux (CHF), was enhanced by modifying the surface characteristics and applying a high intensity electrostatic field, the latter termed electrohydrodynamic (and abbreviated EHD) enhancement. The heat flux was varied from very low values in the natural convection regime up to CHF. Experiments were performed with increasing and decreasing heat flux to study boiling hysteresis without and with EHD. Boiling occurred on the sand blasted surface of a cylindrical copper block with embedded electrical heating elements, with standardized surface parameter Pa = 3.5 ÎŒm. The electric field was generated by a potential of 5 kV to 25 kV, applied through a 40 mm diameter circular electrode of ss-304 wire mesh, aperture size 5.1 mm, located at distances of 5 - 60 mm from the surface, with most of the data obtained for 20 mm. The data for the rough surface were compared with earlier data for a smooth surface and indicated a significant increase in the heat transfer rates. EHD produced a further increase in the heat transfer rates, particularly at low heat flux values and near the CHF. Boiling hysteresis was reduced progressively by EHD and eliminated at high field strength.This work was supported by Government of Pakistan under a scholarship programme

    Scanning angle interference microscopy reveals cell dynamics at the nanoscale

    No full text
    Emerging questions in cell biology necessitate nanometer-scale imaging in live cells. Here we present scanning angle interference microscopy, capable of localizing fluorescent objects with nanometer-scale precision along the optical axis in motile cellular structures. We use this approach to resolve nano-topographical features of the cell membrane and cytoskeleton, as well as the temporal evolution, three-dimensional architecture, and nano-scale dynamics of focal adhesion complexes
    • 

    corecore