125 research outputs found

    Proper Splicing Contributes to Visual Function in The Aging Drosophila Eye

    Get PDF
    Changes in splicing patterns are a characteristic of the aging transcriptome; however, it is unclear whether these age‐related changes in splicing facilitate the progressive functional decline that defines aging. In Drosophila, visual behavior declines with age and correlates with altered gene expression in photoreceptors, including downregulation of genes encoding splicing factors. Here, we characterized the significance of these age‐regulated splicing‐associated genes in both splicing and visual function. To do this, we identified differential splicing events in either the entire eye or photoreceptors of young and old flies. Intriguingly, aging photoreceptors show differential splicing of a large number of visual function genes. In addition, as shown previously for aging photoreceptors, aging eyes showed increased accumulation of circular RNAs, which result from noncanonical splicing events. To test whether proper splicing was necessary for visual behavior, we knocked down age‐regulated splicing factors in photoreceptors in young flies and examined phototaxis. Notably, many of the age‐regulated splicing factors tested were necessary for proper visual behavior. In addition, knockdown of individual splicing factors resulted in changes in both alternative splicing at age‐spliced genes and increased accumulation of circular RNAs. Together, these data suggest that cumulative decreases in splicing factor expression could contribute to the differential splicing, circular RNA accumulation, and defective visual behavior observed in aging photoreceptors

    Messiness of forest governance:How technical approaches suppress politics in REDD+ and conservation projects

    Get PDF
    Reduction of Emissions from Deforestation and Forest Degradation (REDD+) was originally conceived to address the global problem of climate change by reducing deforestation and forest degradation at national and subnational levels in developing countries. Since its inception, REDD+ proponents have increasingly had to adapt global ideas to local demands, as the rollout process was met with on-the-ground realities, including suspicion and protest. As is typical in aid or ‘development’ projects conceived in the global North, most of the solutions advanced to improve REDD+ tend to focus on addressing issues of justice (or ‘fairness’) in distributive terms, rather than addressing more inherently political objections to REDD+ such as those based on rights or social justice. Using data collected from over 700 interviews in five countries with both REDD+ and non-REDD+ cases, we argue that the failure to incorporate political notions of justice into conservation projects such as REDD+ results in ‘messiness’ within governance systems, which is a symptom of injustice and illegitimacy. We find that, first, conservation, payment for ecosystem services, and REDD+ project proponents viewed problems through a technical rather than political lens, leading to solutions that focused on procedures, such as ‘benefit distribution.’ Second, focusing on the technical aspects of interventions came at the expense of political solutions such as the representation of local people's concerns and recognition of their rights. Third, the lack of attention to representation and recognition justices resulted in illegitimacy. This led to messiness in the governance systems, which was often addressed in technical terms, thereby perpetuating the problem. If messiness is not appreciated and addressed from appropriate notions of justice, projects such as REDD+ are destined to fail

    Gis1 and Rph1 Regulate Glycerol and Acetate Metabolism in Glucose Depleted Yeast Cells

    Get PDF
    Aging in organisms as diverse as yeast, nematodes, and mammals is delayed by caloric restriction, an effect mediated by the nutrient sensing TOR, RAS/cAMP, and AKT/Sch9 pathways. The transcription factor Gis1 functions downstream of these pathways in extending the lifespan of nutrient restricted yeast cells, but the mechanisms involved are still poorly understood. We have used gene expression microarrays to study the targets of Gis1 and the related protein Rph1 in different growth phases. Our results show that Gis1 and Rph1 act both as repressors and activators, on overlapping sets of genes as well as on distinct targets. Interestingly, both the activities and the target specificities of Gis1 and Rph1 depend on the growth phase. Thus, both proteins are associated with repression during exponential growth, targeting genes with STRE or PDS motifs in their promoters. After the diauxic shift, both become involved in activation, with Gis1 acting primarily on genes with PDS motifs, and Rph1 on genes with STRE motifs. Significantly, Gis1 and Rph1 control a number of genes involved in acetate and glycerol formation, metabolites that have been implicated in aging. Furthermore, several genes involved in acetyl-CoA metabolism are downregulated by Gis1

    Comparative genomics of Cluster O mycobacteriophages

    Get PDF
    Mycobacteriophages - viruses of mycobacterial hosts - are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages - Corndog, Catdawg, Dylan, Firecracker, and YungJamal - designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange

    Energy injustice and Nordic electric mobility: inequality, elitism, and externalities in the electrification of vehicle-to-grid (V2G) transport

    Get PDF
    Much research on electric mobility transitions has been descriptive or positive, rather than normative or critical, assessing the deeper ethical, justice, or moral issues that arise. To address this gap, this study qualitatively assesses the ongoing transition to Nordic electric vehicles (EVs) and vehicle-to-grid (V2G) systems. It does so through the various lenses of distributive justice, procedural justice, cosmopolitan justice, and recognition justice. It asks: what are the types of injustices associated with electric mobility and V2G? In what ways do emerging patterns of electric mobility worsen socio-environmental risks or vulnerabilities? Based on original primary data collected from 257 experts across Denmark, Finland, Iceland, Norway, and Sweden, the study finds that electric mobility can erode elements of distributive justice for being accessible only to the rich, and for raising risks related to privacy, hacking, and cyberterrorism. Electric mobility may contravene aspects of procedural justice by reinforcing exclusion and elitism in national planning. It can erode cosmopolitan justice by producing negative environmental externalities, and exacerbating rural (and global) vulnerability. It may threaten recognition justice through unemployment, disruption to traditional businesses, and the entrenchment of patriarchy. Thankfully, the study also proposes a suite of policy mechanisms to address many of these concerns

    Simplification and Shift in Cognition of Political Difference: Applying the Geometric Modeling to the Analysis of Semantic Similarity Judgment

    Get PDF
    Perceiving differences by means of spatial analogies is intrinsic to human cognition. Multi-dimensional scaling (MDS) analysis based on Minkowski geometry has been used primarily on data on sensory similarity judgments, leaving judgments on abstractive differences unanalyzed. Indeed, analysts have failed to find appropriate experimental or real-life data in this regard. Our MDS analysis used survey data on political scientists' judgments of the similarities and differences between political positions expressed in terms of distance. Both distance smoothing and majorization techniques were applied to a three-way dataset of similarity judgments provided by at least seven experts on at least five parties' positions on at least seven policies (i.e., originally yielding 245 dimensions) to substantially reduce the risk of local minima. The analysis found two dimensions, which were sufficient for mapping differences, and fit the city-block dimensions better than the Euclidean metric in all datasets obtained from 13 countries. Most city-block dimensions were highly correlated with the simplified criterion (i.e., the left–right ideology) for differences that are actually used in real politics. The isometry of the city-block and dominance metrics in two-dimensional space carries further implications. More specifically, individuals may pay attention to two dimensions (if represented in the city-block metric) or focus on a single dimension (if represented in the dominance metric) when judging differences between the same objects. Switching between metrics may be expected to occur during cognitive processing as frequently as the apparent discontinuities and shifts in human attention that may underlie changing judgments in real situations occur. Consequently, the result has extended strong support for the validity of the geometric models to represent an important social cognition, i.e., the one of political differences, which is deeply rooted in human nature

    Regulation of conditional gene expression by coupled transcription repression and RNA degradation

    Get PDF
    Gene expression is determined by a combination of transcriptional and post-transcriptional regulatory events that were thought to occur independently. This report demonstrates that the genes associated with the Snf3p–Rgt2p glucose-sensing pathway are regulated by interconnected transcription repression and RNA degradation. Deletion of the dsRNA-specific ribonuclease III Rnt1p increased the expression of Snf3p–Rgt2p-associated transcription factors in vivo and the recombinant enzyme degraded their messenger RNA in vitro. Surprisingly, Rnt1ps effect on gene expression in vivo was both RNA and promoter dependent, thus linking RNA degradation to transcription. Strikingly, deletion of RNT1-induced promoter-specific transcription of the glucose sensing genes even in the absence of RNA cleavage signals. Together, the results presented here support a model in which co-transcriptional RNA degradation increases the efficiency of gene repression, thereby allowing an effective cellular response to the continuous changes in nutrient concentrations

    Classification of Inhibitors of Hepatic Organic Anion Transporting Polypeptides (OATPs): Influence of Protein Expression on Drug–Drug Interactions

    Get PDF
    ABSTRACT: The hepatic organic anion transporting poly-peptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug−drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors

    Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Get PDF
    Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells
    corecore