2,019 research outputs found

    "Losend dem Gotzwort!": Gottfried W. Lochers Bedeutung für die Zwingliforschung

    Get PDF

    Zwinglis sozialökonomische Gerechtigkeitslehre - heute wiedergelesen

    Get PDF

    Systems analysis of host-parasite interactions.

    Get PDF
    Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug-resistant parasites necessitates that the research community take an active role in understanding host-parasite infection biology in order to develop improved therapeutics. Recent advances in next-generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host-parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high-throughput -omic data will undoubtedly generate extraordinary insight into host-parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host-parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies

    Zwingli und Karl Barth

    Get PDF

    SURVEYING FOR RANAVIRUS IN GREEN FROGS (LITHOBATES CLAMITANS) AT FIVE LOCATIONS IN INDIANA

    Get PDF
    Ranaviruses are an emerging pathogen within the United States that infects amphibians, reptiles, and fish. A Frog Virus 3-like (FV3) ranavirus has been detected at only two locations in Indiana; however, there have been few attempts to broadly sample for ranaviruses to determine their distribution across the state. This knowledge is necessary for the continued management and conservation of native amphibian populations. Our objective was to assess the occurrence of FV3-like ranaviruses in larval Green Frog (Lithobates clamitans) populations at five sites located in different regions of Indiana. Tissue samples were collected from 166 individuals and were assayed using both conventional and qPCR methods. We did not detect the presence of any FV3-like ranaviruses at any of the five sites with either PCR method, suggesting the possibility that at these sites, FV3-like ranaviruses may not be present. However, continued sampling should be carried out to monitor the status of the presence of ranaviruses in this portion of the Midwest

    The Study of Malayan Latah

    Full text link
    Page range: 77-10

    An examination of geographic patterns of soil climate and its classification in the U.S. system of soil taxonomy

    Get PDF
    Soil climate, the record of temporal patterns of soil moisture and temperature, is an important component of the structure of U.S. Soil Taxonomy. The U.S. Soil Survey has used the Newhall Simulation Model (NSM) for estimating soil climate from atmospheric climate records at weather stations since the 1970s. The current soil climate map of the U.S. was published in 1994 by using NSM runs from selected weather stations along with knowledge-based hand-drawn mapping procedures. We developed a revised soil climate mapping methodology using the NSM and digital soil mapping techniques. The new methodology is called Grid Element Newhall Simulation Model (GEN), where a coordinate system is used to divide geographic space into a grid and each element or grid-cell serves as a reference area for querying and organizing model input, and for organizing and displaying model output. The GEN was used to make a soil moisture map of the conterminous U.S. (GEN-CONUS). GEN-CONUS and the 1994 map were compared to each other and to two sets of weather station data from years 1961 to 1990 and years 1971 to 2000 (National climate data center, NCDC). Agreement between GEN-CONUS and the 1994 map was 75.6%. GEN-CONUS had higher agreement than the 1994 map with NSM output from NCDC data for 1961-1990 and 1971-2000 (kappa = 0.845 and 0.777). The GEN methodology was also used to generate a map of projected soil climate in the year 2080 for part of the Southern Rocky Mountains, predicting expansion of the Ustic and contraction of the Udic moisture regimes. Soil climate in the conterminous US is expected to change in response to global climate change. Soil moisture and temperature are strongly influenced by atmospheric climate variables. The Grid Element Newhall Simulation Model (GEN), an updated NSM for geographic raster data, was developed and applied in this project to future climate simulations available from International atmospheric climate prediction projects. These included a simulation of 1) current climate conditions, 2) climate in year 2070 under a radiative forcing increase scenario of 2.6 W m-2 above pre-industrial levels (a low estimate) and 3) climate in the year 2070 under a radiative forcing scenario increase of 8.5 W m-2 (higher estimate). As a driver of soil development and a key factor of soil formation, climate influences physical and chemical properties of soils as they form from geological and biological material. In this study we examine soil climate as simulated by the NSM and its relation to georeferenced point observations of soil properties measured and recorded over many decades by the National Cooperative Soil Survey. The goal is to determine the strength and direction of relationships between geographic observations of soil properties that may have been influenced by climate and the simulations of soil climate for the same locations. An additional goal is to determine whether the NSM as a process model contributes substantially to an accounting of the interaction between atmospheric climate and any resulting soil properties, or whether a simpler observational model that does not include simulation of soil moisture and temperature interactions might be sufficient or superior to this simulation approach. The observational model includes the same input directly taken from atmospheric climate datasets as that used to populate the NSM, but does not include simulation of how the atmospheric climate would translate into soil climate through simulation of moisture and temperature dynamics in the soil. We find that the NSM may have some value as a tool to explain a few relationships between climate and soil properties observed in the NCSS dataset, but that direct observation without simulation also shows promise. Severe limitations in the NCSS data include unknown sampling biases, ambiguous geographical precision of observation, inconsistent sampling and analysis protocols, incomplete data records, etc. Limitations of the usefulness of the NSM include high levels of multicollinearity among model output parameters, adherence to moisture modelling behavior that does not account for the complexities of preferential flow, the assumption of free-drainage in all soils modelled, the lack of a ponding routine or a realistic accounting of snow melt dynamics, as well as other limitations. These limitations may restrict the results of this study from providing firm conclusions, but exploratory analysis does indicate some positive correlations between atmospheric climate and soil properties, particularly after atmospheric datasets are applied to simulation of soil climate through the NSM. (Abstract shortened by ProQuest.

    Brennstoffzellen als Beispiel für den Technologietransfer am TWI

    Get PDF

    Government regulation and public opposition create high additional costs for field trials with GM crops in Switzerland

    Get PDF
    Field trials with GM crops are not only plant science experiments. They are also social experiments concerning the implications of government imposed regulatory constraints and public opposition for scientific activity. We assess these implications by estimating additional costs due to government regulation and public opposition in a recent set of field trials in Switzerland. We find that for every Euro spent on research, an additional 78 cents were spent on security, an additional 31 cents on biosafety, and an additional 17 cents on government regulatory supervision. Hence the total additional spending due to government regulation and public opposition was around 1.26 Euros for every Euro spent on the research per se. These estimates are conservative; they do not include additional costs that are hard to monetize (e.g. stakeholder information and dialogue activities, involvement of various government agencies). We conclude that further field experiments with GM crops in Switzerland are unlikely unless protected sites are set up to reduce these additional cost
    corecore