683 research outputs found

    Atomic hydrogen, star formation and feedback in the lowest mass Blue Compact Dwarf galaxies

    Full text link
    We present the results from a search for HI emission from a sample of newly discovered dwarf galaxies in the M81 group. HI is detected in three galaxies, all of which are classified as BCDs. The HI masses of these galaxies are ~ 10^6 M_sun, making these some of the lowest mass BCDs known. For these three galaxies FUV images (from GALEX) and H-alpha images (from the Russian 6m BTA telescope) are available.The H-alpha emission is very faint, and, in principle could be produced by a single O star. Further, in all cases we find offsets between the peak of the FUV emission and that of the H-alpha emission. Offsets between the most recent sites of star formation (i.e. those traced by H-alpha) and the older sites (i.e. those traced by FUV) would be natural if the star formation is stochastic. In spite of the expectation that the effects of mechanical feedback from star formation would be most directly seen in the smallest galaxies with low gravitational potentials, we only see tentative evidence of outflowing HI gas associated with the star forming region in one of the galaxies.Comment: 9 pages, 5 figures, 5 tables. Accepted for publication in MNRAS. The definitive version is available at www.blackwell-synergy.co

    Sunyaev-Zel'dovich Effects from Quasars in Galaxies and Groups

    Get PDF
    The energy fed by active galactic nuclei to the surrounding diffuse baryons changes their amount, temperature, and distribution; so in groups and in member galaxies it affects the X-ray luminosity and also the Sunyaev-Zel'dovich effect. Here we compute how the latter is enhanced by the transient blastwave driven by an active quasar, and is depressed when the equilibrium is recovered with a depleted density. We constrain such depressions and enhancements with the masses of relic black holes in galaxies and the X-ray luminosities in groups. We discuss how all these linked observables can tell the quasar contribution to the thermal history of the baryons pervading galaxies and groups.Comment: 4 pages, 3 figures, uses REVTeX4 and emulateapj.cls. Accepted by ApJ

    On the complete analytic structure of the massive gravitino propagator in four-dimensional de Sitter space

    Full text link
    With the help of the general theory of the Heun equation, this paper completes previous work by the authors and other groups on the explicit representation of the massive gravitino propagator in four-dimensional de Sitter space. As a result of our original contribution, all weight functions which multiply the geometric invariants in the gravitino propagator are expressed through Heun functions, and the resulting plots are displayed and discussed after resorting to a suitable truncation in the series expansion of the Heun function. It turns out that there exist two ranges of values of the independent variable in which the weight functions can be divided into dominating and sub-dominating family.Comment: 21 pages, 9 figures. The presentation has been further improve

    The evolution of dwarf galaxies in the Coma supercluster

    Full text link
    We employ spectroscopic and photometric data from SDSS DR7, in a 500 sq degree region, to understand the evolution of dwarf (~M*+2<M_z<M*+4) galaxies in the Coma supercluster (z=0.023). We show that in the Coma supercluster, the red dwarfs are mostly concentrated in the dense cores of the Coma and Abell 1367 clusters, and in the galaxy groups embedded in the filament connecting them. The post-starburst (k+A) dwarfs however are found in the infall regions of the Coma and Abell 1367 clusters, and occasionally in galaxy groups embedded along the filament, suggesting that strong velocity fields prevalent in the vicinity of deep potential wells may be closely related to the mechanism(s) leading to the post-starburst phase in dwarf galaxies. Moreover, the blue colour of some k+A dwarfs in the Coma cluster, found within its virial radius, suggests that the star formation in these galaxies was quenched very rapidly in the last 500 Myr. More than 60% of all red dwarf galaxies in the supercluster have 0-3 ang of H_\delta in absorption, which suggests that a major episode of star formation occurred in a non-negligible fraction of these galaxies, ending within the last Gyr, allowing them to move to the red sequence. The distribution of the blue dwarf galaxies in the Coma supercluster is bimodal in the EW(H_\alpha)-EW(H_\delta) plane, with one population having very high emission in H_\alpha, and some emission in H_\delta. A sub-population of blue dwarfs is coincident with the red dwarfs in the EW(H_\alpha)-EW(H_\delta) plane, showing absorption in H_\delta and relatively lower emission in H_\alpha. We suggest that a large fraction of the latter population are the progenitors of the passive dwarf galaxies that are abundantly found in the cores of low-redshift rich clusters such as Coma.Comment: 6 Pages, 5 Figures, Accepted for publication in MNRA

    Simulations of the formation and evolution of isolated dwarf galaxies - II. Angular momentum as a second parameter

    Get PDF
    We show results based on a large suite of N-Body/SPH simulations of isolated, flat dwarf galaxies, both rotating and non-rotating. The main goal is to investigate possible mechanisms to explain the observed dichotomy in radial stellar metallicity profiles of dwarf galaxies: dwarf irregulars (dIrr) and flat, rotating dwarf ellipticals (dE) generally possess flat metallicity profiles, while rounder and non-rotating dEs show strong negative metallicity gradients. These simulations show that flattening by rotation is key to reproducing the observed characteristics of flat dwarf galaxies, proving particularly efficient in erasing metallicity gradients. We propose a "centrifugal barrier mechanism" as an alternative to the previously suggested "fountain mechanism" for explaining the flat metallicity profiles of dIrrs and flat, rotating dEs. While only flattening the dark-matter halo has little influence, the addition of angular momentum slows down the infall of gas, so that star formation (SF) and the ensuing feedback are less centrally concentrated, occurring galaxy-wide. Additionally, this leads to more continuous SFHs by preventing large-scale oscillations in the SFR ("breathing"), and creates low density holes in the ISM, in agreement with observations of dIrrs. Our general conclusion is that rotation has a significant influence on the evolution and appearance of dwarf galaxies, and we suggest angular momentum as a second parameter (after galaxy mass as the dominant parameter) in dwarf galaxy evolution. Angular momentum differentiates between SF modes, making our fast rotating models qualitatively resemble dIrrs, which does not seem possible without rotation.Comment: Accepted for publication in MNRAS | 19 pages, 20 figures | extra online content available (animations) : on the publisher's website / on the YouTube channel for the astronomy department of the University of Ghent : http://www.youtube.com/user/AstroUGent / YouTube playlist specifically for this article : http://www.youtube.com/user/AstroUGent#grid/user/EFAA5AAE5C5E474

    Pressure Support in Galaxy Disks: Impact on Rotation Curves and Dark Matter Density Profiles

    Full text link
    Rotation curves constrain a galaxy's underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emission lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds <75km/s, but are unlikely to be significant in higher mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in galaxies. Thus, while pressure support may alleviate possible tensions between rotation curve observations and LambdaCDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.Comment: Accepted to the Astrophysical Journal; 18 pages including 5 pages of figure

    Estimating gas accretion in disc galaxies using the Kennicutt-Schmidt law

    Get PDF
    We show how the existence of a relation between the star formation rate and the gas density, i.e. the Kennicutt-Schmidt law, implies a continuous accretion of fresh gas from the environment into the discs of spiral galaxies. We present a method to derive the gas infall rate in a galaxy disc as a function of time and radius, and we apply it to the disc of the Milky Way and 21 galaxies from the THINGS sample. For the Milky Way, we found that the ratio between the past and current star formation rates is about 2-3, averaged over the disc, but it varies substantially with radius. In the other disc galaxies there is a clear dependency of this ratio with galaxy stellar mass and Hubble type, with more constant star formation histories for small galaxies of later type. The gas accretion rate follows very closely the SFR for every galaxy and it dominates the evolution of these systems. The Milky Way has formed two thirds of its stars after z=1, whilst the mass of cold gas in the disc has remained fairly constant with time. In general, all discs have accreted a significant fraction of their gas after z=1. Accretion moves from the inner regions of the disc to the outer parts, and as a consequence star formation moves inside-out as well. At z=0 the peak of gas accretion in the Galaxy is at about 6-7 kpc from the centre.Comment: 14 pages, 10 figures, accepted for publication in MNRA

    Attractor Flows in st^2 Black Holes

    Full text link
    Following the same treatment of Bellucci et.al., we obtain the hitherto unknown general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing and vanishing central charge Z for the so-called st^2 model, the minimal rank-2 N=2 symmetric supergravity in d=4 space-time dimensions. We also make useful comparisons with results that already exist in literature,and introduce the fake supergravity (first-order) formalism to be used in our analysis. An analysis of the BPS bound all along the non-BPS attractor flows and of the marginal stability of corresponding D-brane charge configurations has also been presented.Comment: 59 pages,Latex. arXiv admin note: substantial text overlap with arXiv:0807.3503 by other author

    The First Galaxies: Assembly of Disks and Prospects for Direct Detection

    Get PDF
    The James Webb Space Telescope (JWST) will enable observations of galaxies at redshifts z > 10 and hence allow to test our current understanding of structure formation at very early times. Previous work has shown that the very first galaxies inside halos with virial temperatures T < 10^4 K and masses M < 10^8 M_sun at z > 10 are probably too faint, by at least one order of magnitude, to be detected even in deep exposures with JWST. The light collected with JWST may therefore be dominated by radiation from galaxies inside ten times more massive halos. We use cosmological zoomed smoothed particle hydrodynamics simulations to investigate the assembly of such galaxies and assess their observability with JWST. We compare two simulations that are identical except for the inclusion of non-equilibrium H/D chemistry and radiative cooling by molecular hydrogen. In both simulations a large fraction of the halo gas settles in two nested, extended gas disks which surround a compact massive gas core. The presence of molecular hydrogen allows the disk gas to reach low temperatures and to develop marked spiral structure but does not qualitatively change its stability against fragmentation. We post-process the simulated galaxies by combining idealized models for star formation with stellar population synthesis models to estimate the luminosities in nebular recombination lines as well as in the ultraviolet continuum. We demonstrate that JWST will be able to constrain the nature of the stellar populations in galaxies such as simulated here based on the detection of the He1640 recombination line. Extrapolation of our results to halos with masses both lower and higher than those simulated shows that JWST may find up to a thousand star-bursting galaxies in future deep exposures of the z > 10 universe.Comment: 19 pages, 13 figures. Accepted for publication in ApJ. Revised version with improved presentations and discussion
    corecore