486 research outputs found

    Different states of integrin LFA-1 aggregation are controlled through its association with tetraspanin CD9

    Full text link
    This is the author’s version of a work that was accepted for publication in Biochimica et Biophysica Acta - Mollecular Cell Research. A definitive version was subsequently published in Biochimica et Biophysica Acta - Mollecular Cell Research, 1853.10 (2015): 2464-2480 DOI: 10.1016/j.bbamcr.2015.05.018The tetraspanin CD9 has been shown to interact with different members of the β1 and β3 subfamilies of integrins, regulating through these interactions cell adhesion, migration and signaling. Based on confocal microscopy co-localization and on coimmunoprecipitation results, we report here that CD9 associates with the β2 integrin LFA-1 in different types of leukocytes including T, B and monocytic cells. This association is resistant to stringent solubilisation conditions which, together with data from chemical crosslinking, in situ Proximity Ligation Assays and pull-down experiments, suggests a primary/direct type of interaction mediated by the Large Extracellular Loop of the tetraspanin. CD9 exerts inhibitory effects on the adhesive function of LFA-1 and on LFA-1-dependent leukocyte cytotoxic activity. The mechanism responsible for this negative regulation exerted by CD9 on LFA-1 adhesion does not involve changes in the affinity state of this integrin but seems to be related to alterations in its state of aggregationThis work was supported by grant SAF2012-34561 from the Spanish «Ministerio de Economía y Competitividad-MINECO», (to C.C.). R.R.M. salary is supported by a «Profesor Ayudante» position from Departamento de Biología, Facutad de Ciencias, Universidad Autónoma de Madri

    Liprin- 1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration

    Get PDF
    Cell migration during development and metastatic invasion requires the coordination of actin and adhesion dynamics to promote protrusive activity at the front of the cell. The knowledge of the molecular mechanisms required to achieve such coordination is fragmentary. Here, we identify a new functional complex that drives cell motility. ERC1a (an isoform of ERC1) and the LL5 proteins LL5α and LL5β (encoded by PHLDB1 and PHLDB2, respectively) are required, together with liprin-α1, for effective migration and tumor cell invasion, and do so by stabilizing the protrusive activity at the cell front. Depletion of either protein negatively affects invasion, migration on extracellular matrix, lamellipodial persistence and the internalization of active integrin β1 receptors needed for adhesion turnover at the front of the cell. Liprin-α1, ERC1a and LL5 also define new highly polarized and dynamic cytoplasmic structures uniquely localized near the protruding cell edge. Our results indicate that the functional complex and the associated structures described here represent an important mechanism to drive tumor cell migration

    Tetraspanin CD9 limits mucosal healing in experimental colitis

    Full text link
    Tetraspanins are a family of proteins with four transmembrane domains that associate between themselves and cluster with other partner proteins, conforming a distinct class of membrane domains, the tetraspanin-enriched microdomains (TEMs). These TEMs constitute macromolecular signaling platforms that regulate key processes in several cellular settings controlling signaling thresholds and avidity of receptors. In this study, we investigated the role of CD9, a tetraspanin that regulates major biological processes such as cell migration and immunological responses, in two mouse models of colitis that have been used to study the pathogenesis of inflammatory bowel disease (IBD). Previous in vitro studies revealed an important role in the interaction of leukocytes with inflamed endothelium, but in vivo evidence of the involvement of CD9 in inflammatory diseases is scarce. Here, we studied the role of CD9 in the pathogenesis of colitis in vivo. Colitis was induced by administration of dextran sodium sulfate (DSS), a chemical colitogen that causes epithelial disruption and intestinal inflammation. CD9 -/- mice showed less severe colitis than wild-type counterparts upon exposure to DSS (2% solution) and enhanced survival in response to a lethal DSS dose (4%). Decreased neutrophil and macrophage cell infiltration was observed in colonic tissue from CD9 -/- animals, in accordance with their lower serum levels of TNF-α, IL-6, and other proinflammatory cytokines in the colon. The specific role of CD9 in IBD was further dissected by transfer of CD4 + CD45RB hi naive T cells into the Rag1 -/- mouse colitis model. However, no significant differences were observed in these settings between both groups, ruling out a role for CD9 in IBD in the lymphoid compartment. Experiments with bone marrow chimeras revealed that CD9 in the non-hematopoietic compartment is involved in colon injury and limits the proliferation of epithelial cells. Our data indicate that CD9 in non-hematopoietic cells plays an important role in colitis by limiting epithelial cell proliferation. Future strategies to repress CD9 expression may be of therapeutic benefit in the treatment of IBDThis work was supported by grants to FS-M (SAF2014-55579-R; INDISNET-S2011/BMD-2332; ERC-2011-AdG 294340-GENTRIS; PIE13/00041; and CIBER CARDIOVASCULAR) and was cofunded by Fondo Europeo de Desarrollo Regional (FEDER). The CNIC is supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and by the Pro CNIC Foundatio

    Inhibition of β2Integrin–Mediated Leukocyte Cell Adhesion by Leucine–Leucine–Glycine Motif–Containing Peptides

    Get PDF
    Many integrins mediate cell attachment to the extracellular matrix by recognizing short tripeptide sequences such as arginine–glycine–aspartic acid and leucine–aspartate–valine. Using phage display, we have now found that the leukocyte-specific β2 integrins bind sequences containing a leucine–leucine–glycine (LLG) tripeptide motif. An LLG motif is present on intercellular adhesion molecule (ICAM)-1, the major β2 integrin ligand, but also on several matrix proteins, including von Willebrand factor. We developed a novel β2 integrin antagonist peptide CPCFLLGCC (called LLG-C4), the structure of which was determined by nuclear magnetic resonance. The LLG-C4 peptide inhibited leukocyte adhesion to ICAM-1, and, interestingly, also to von Willebrand factor. When immobilized on plastic, the LLG-C4 sequence supported the β2 integrin–mediated leukocyte adhesion, but not β1 or β3 integrin–mediated cell adhesion. These results suggest that LLG sequences exposed on ICAM-1 and on von Willebrand factor at sites of vascular injury play a role in the binding of leukocytes, and LLG-C4 and peptidomimetics derived from it could provide a therapeutic approach to inflammatory reactions

    The Small Gtpase, Rap1, Mediates Cd31-Induced Integrin Adhesion

    Get PDF
    Integrin-mediated leukocyte adhesion is a critical aspect of leukocyte function that is tightly regulated by diverse stimuli, including chemokines, antigen receptors, and adhesion receptors. How cellular signals from CD31 and other adhesion amplifiers are integrated with those from classical mitogenic stimuli to regulate leukocyte function remains poorly understood. Here, we show that the cytoplasmic tail of CD31, an important integrin adhesion amplifier, propagates signals that induce T cell adhesion via β1 (VLA-4) and β2 (LFA-1) integrins. We identify the small GTPase, Rap1, as a critical mediator of this effect. Importantly, CD31 selectively activated the small Ras-related GTPase, Rap1, but not Ras, R-Ras, or Rap2. An activated Rap1 mutant stimulated T lymphocyte adhesion to intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), as did the Rap1 guanine nucleotide exchange factor C3G and a catalytically inactive mutant of RapGAP. Conversely, negative regulators of Rap1 signaling blocked CD31-dependent adhesion. These findings identify a novel important role for Rap1 in regulating ligand-induced cell adhesion and suggest that Rap1 may play a more general role in coordinating adhesion-dependent signals during leukocyte migration and extravasation. Our findings also suggest an alternative mechanism, distinct from interference with Ras-proximal signaling, by which Rap1 might mediate transformation reversion

    仙台中将様御参府御下宿割帳

    Get PDF
    Contains fulltext : 177846.pdf (preprint version ) (Open Access)Standard therapy of patients with B cell non-Hodgkin lymphoma (B-NHL) predominantly consists of chemotherapy combined with anti-CD20 (e.g., rituximab) immunotherapy. However, relapse of aggressive B-NHL occurs frequently, and this may coincide with therapy resistance. This demonstrates the urgent need for exploring new lymphoma-targeted therapies. We review here recent insights in the pathophysiology of B-NHL and discuss CD20 and three alternative membrane targets (B cell receptor, immune checkpoints PD-1/PD-L1, tetraspanin CD37) that are currently in the spotlight for B-NHL treatment. Furthermore, we present a novel concept in which the plasma membrane organization of the lymphoma B cell determines the efficacy of membrane-targeted therapies, and this has consequences for treatment application and clinical outcome in patients with B cell lymphoma

    Intron Evolution: Testing Hypotheses of Intron Evolution Using the Phylogenomics of Tetraspanins

    Get PDF
    BACKGROUND: Although large scale informatics studies on introns can be useful in making broad inferences concerning patterns of intron gain and loss, more specific questions about intron evolution at a finer scale can be addressed using a gene family where structure and function are well known. Genome wide surveys of tetraspanins from a broad array of organisms with fully sequenced genomes are an excellent means to understand specifics of intron evolution. Our approach incorporated several new fully sequenced genomes that cover the major lineages of the animal kingdom as well as plants, protists and fungi. The analysis of exon/intron gene structure in such an evolutionary broad set of genomes allowed us to identify ancestral intron structure in tetraspanins throughout the eukaryotic tree of life. METHODOLOGY/PRINCIPAL FINDINGS: We performed a phylogenomic analysis of the intron/exon structure of the tetraspanin protein family. In addition, to the already characterized tetraspanin introns numbered 1 through 6 found in animals, three additional ancient, phase 0 introns we call 4a, 4b and 4c were found. These three novel introns in combination with the ancestral introns 1 to 6, define three basic tetraspanin gene structures which have been conserved throughout the animal kingdom. Our phylogenomic approach also allows the estimation of the time at which the introns of the 33 human tetraspanin paralogs appeared, which in many cases coincides with the concomitant acquisition of new introns. On the other hand, we observed that new introns (introns other than 1-6, 4a, b and c) were not randomly inserted into the tetraspanin gene structure. The region of tetraspanin genes corresponding to the small extracellular loop (SEL) accounts for only 10.5% of the total sequence length but had 46% of the new animal intron insertions. CONCLUSIONS/SIGNIFICANCE: Our results indicate that tests of intron evolution are strengthened by the phylogenomic approach with specific gene families like tetraspanins. These tests add to our understanding of genomic innovation coupled to major evolutionary divergence events, functional constraints and the timing of the appearance of evolutionary novelty

    Integrin α6Bβ4 inhibits colon cancer cell proliferation and c-Myc activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrins are known to be important contributors to cancer progression. We have previously shown that the integrin β4 subunit is up-regulated in primary colon cancer. Its partner, the integrin α6 subunit, exists as two different mRNA splice variants, α6A and α6B, that differ in their cytoplasmic domains but evidence for distinct biological functions of these α6 splice variants is still lacking.</p> <p>Methods</p> <p>In this work, we first analyzed the expression of integrin α6A and α6B at the protein and transcript levels in normal human colonic cells as well as colorectal adenocarcinoma cells from both primary tumors and established cell lines. Then, using forced expression experiments, we investigated the effect of α6A and α6B on the regulation of cell proliferation in a colon cancer cell line.</p> <p>Results</p> <p>Using variant-specific antibodies, we observed that α6A and α6B are differentially expressed both within the normal adult colonic epithelium and between normal and diseased colonic tissues. Proliferative cells located in the lower half of the glands were found to predominantly express α6A, while the differentiated and quiescent colonocytes in the upper half of the glands and surface epithelium expressed α6B. A relative decrease of α6B expression was also identified in primary colon tumors and adenocarcinoma cell lines suggesting that the α6A/α6B ratios may be linked to the proliferative status of colonic cells. Additional studies in colon cancer cells showed that experimentally restoring the α6A/α6B balance in favor of α6B caused a decrease in cellular S-phase entry and repressed the activity of c-Myc.</p> <p>Conclusion</p> <p>The findings that the α6Bβ4 integrin is expressed in quiescent normal colonic cells and is significantly down-regulated in colon cancer cells relative to its α6Aβ4 counterpart are consistent with the anti-proliferative influence and inhibitory effect on c-Myc activity identified for this α6Bβ4 integrin. Taken together, these findings point out the importance of integrin variant expression in colon cancer cell biology.</p

    Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo.</p> <p>Methods</p> <p>In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection.</p> <p>Results</p> <p>We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection.</p> <p>Conclusions</p> <p>Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection.</p
    corecore