97 research outputs found

    Racing an Opponent Alters Pacing, Performance and Muscle Force Decline, But Not RPE.

    Get PDF
    Performing against a virtual opponent has been shown to invite a change in pacing and improve time trial (TT) performance. This study explored how this performance improvement is established by assessing changes in pacing, neuromuscular function and perceived exertion.After a peak power output test and a familiarization TT, twelve trained cyclists completed two 4-km TTs in randomized order on a Velotron cycle ergometer. Time trial conditions were riding alone (NO), and riding against a virtual opponent (OP). Knee-extensor performance was quantified before and directly after the TT using maximal voluntary contraction force (MVC), voluntary activation (VA) and potentiated doublet-twitch force (PT). Differences between the experimental conditions were examined using Repeated-measures ANOVAs. Linear regression analyses were conducted to associate changes in pacing to changes in MVC, VA and PT.OP was completed faster than NO (mean power output OP: 289.6±56.1W vs. NO: 272.2±61.6W; p=0.020), mainly due to a faster initial pace. This was accompanied by a greater decline in MVC (MVCpre-vs-post: -17.5±12.4% vs. -11.4±10.9%, P=0.032) and PT (PTpre-vs-post: -23.1±14.0% vs. -16.2±11.4%, P=0.041) after OP compared to NO. No difference between conditions was found for VA (VApre-vs-post: -4.9±6.7% vs. -3.4±5.0%, P=0.274). RPE did not differ between OP and NO.The improved performance when racing against a virtual opponent was associated with a greater decline in voluntary and evoked muscle force compared to riding alone, without a change in perceived exertion, highlighting the importance of human-environment interactions in addition to one's internal state for pacing regulation and performance

    A kapwa-infused paradigm in teaching Catholic theology/catechesis in a multireligious classroom in the Philippines

    Get PDF
    The increasing religious diversity in educational space has raised a legitimate question on how Catholic theology/ catechesis must be taught in Philippine Catholic universities given the institutional mandate to educate students “into the faith of the Church through teaching of Christian doctrine in an organic and systematic way” (Wuerl, 2013, 1). On this note, the paper makes reference to “centered plural- ism” (CP), a positional posture espoused by Georgetown University in dealing with this predicament. In an attempt to (re) appropriate CP into local context, there is a need to explore the Filipino conception of self/others as enveloped within the indigenous concept of kapwa. Hereon, the paper finds that CP is not just feasibly suitable in local context but with kapwa's more inclusive description of the relationship of self and others, a CP‐based teaching paradigm in theology/ catechesis is a promising project in the educational scene of the Philippines

    Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass

    Get PDF
    Recent laboratory studies have demonstrated that isoprene oxidation products can partition to atmospheric aerosols by reacting with condensed phase sulfuric acid, forming low-volatility organosulfate compounds. We have identified organosulfate compounds in free tropospheric aerosols by single particle mass spectrometry during several airborne field campaigns. One of these organosulfates is identified as the sulfate ester of IEPOX, a second generation oxidation product of isoprene. The patterns of IEPOX sulfate ester in ambient data generally followed the aerosol acidity and NOx dependence established by laboratory studies. Detection of the IEPOX sulfate ester was most sensitive using reduced ionization laser power, when it was observed in up to 80% of particles in the tropical free troposphere. Based on laboratory mass calibrations, IEPOX added > 0.4% to tropospheric aerosol mass in the remote tropics and up to 20% in regions downwind of isoprene sources. In the southeastern United States, when acidic aerosol was exposed to fresh isoprene emissions, accumulation of IEPOX increased aerosol mass by up to 3%. The IEPOX sulfate ester is therefore one of the most abundant single organic compounds measured in atmospheric aerosol. Our data show that acidity-dependent IEPOX uptake is a mechanism by which anthropogenic SO2 and marine dimethyl sulfide emissions generate secondary biogenic aerosol mass throughout the troposphere

    Candida albicans repetitive elements display epigenetic diversity and plasticity

    Get PDF
    Transcriptionally silent heterochromatin is associated with repetitive DNA. It is poorly understood whether and how heterochromatin differs between different organisms and whether its structure can be remodelled in response to environmental signals. Here, we address this question by analysing the chromatin state associated with DNA repeats in the human fungal pathogen Candida albicans. Our analyses indicate that, contrary to model systems, each type of repetitive element is assembled into a distinct chromatin state. Classical Sir2-dependent hypoacetylated and hypomethylated chromatin is associated with the rDNA locus while telomeric regions are assembled into a weak heterochromatin that is only mildly hypoacetylated and hypomethylated. Major Repeat Sequences, a class of tandem repeats, are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Marker gene silencing assays and genome-wide RNA sequencing reveals that C. albicans heterochromatin represses expression of repeat-associated coding and non-coding RNAs. We find that telomeric heterochromatin is dynamic and remodelled upon an environmental change. Weak heterochromatin is associated with telomeres at 30?°C, while robust heterochromatin is assembled over these regions at 39?°C, a temperature mimicking moderate fever in the host. Thus in C. albicans, differential chromatin states controls gene expression and epigenetic plasticity is linked to adaptation

    Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project

    Get PDF
    We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background) aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in southern Russia and southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion. <br></br> Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB) and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day<sup>−1</sup> between 3 and 7 km and a slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO) in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of the BB particles between the time they were emitted and the time they were observed in dense layers above the sea-ice inversion layer

    Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia

    Get PDF
    Purpose: To investigate the effects of caffeine on performance, neuromuscular fatigue and perception of effort during high-intensity cycling exercise in moderate hypoxia. Methods: Seven adult male participants firstly underwent an incremental exercise test on a cycle ergometer in conditions of acute normobaric hypoxia (fraction inspired oxygen = 0.15) to establish peak power output (PPO). In the following two visits, they performed a time to exhaustion test (78 ± 3% PPO) in the same hypoxic conditions after caffeine ingestion (4 mg kg1^{−1}) and one after placebo ingestion in a double-blind, randomized, counterbalanced cross-over design. Results: Caffeine significantly improved time to exhaustion by 12%. A significant decrease in subjective fatigue was found after caffeine consumption. Perception of effort and surface electromyographic signal amplitude of the vastus lateralis were lower and heart rate was higher in the caffeine condition when compared to placebo. However, caffeine did not reduce the peripheral and central fatigue induced by high-intensity cycling exercise in moderate hypoxia. Conclusion: The caffeine-induced improvement in time to exhaustion during high-intensity cycling exercise in moderate hypoxia seems to be mediated by a reduction in perception of effort, which occurs despite no reduction in neuromuscular fatigue

    Looking forward through the past: identification of 50 priority research questions in palaeoecology

    Get PDF
    1. Priority question exercises are becoming an increasingly common tool to frame future agendas in conservation and ecological science. They are an effective way to identify research foci that advance the field and that also have high policy and conservation relevance. 2. To date, there has been no coherent synthesis of key questions and priority research areas for palaeoecology, which combines biological, geochemical and molecular techniques in order to reconstruct past ecological and environmental systems on time-scales from decades to millions of years. 3. We adapted a well-established methodology to identify 50 priority research questions in palaeoecology. Using a set of criteria designed to identify realistic and achievable research goals, we selected questions from a pool submitted by the international palaeoecology research community and relevant policy practitioners. 4. The integration of online participation, both before and during the workshop, increased international engagement in question selection. 5. The questions selected are structured around six themes: human–environment interactions in the Anthropocene; biodiversity, conservation and novel ecosystems; biodiversity over long time-scales; ecosystem processes and biogeochemical cycling; comparing, combining and synthesizing information from multiple records; and new developments in palaeoecology. 6. Future opportunities in palaeoecology are related to improved incorporation of uncertainty into reconstructions, an enhanced understanding of ecological and evolutionary dynamics and processes and the continued application of long-term data for better-informed landscape management

    Combining Contemporary and Paleoecological Perspectives for Estimating Forest Resilience

    Get PDF
    In the face of dramatic climate change and human pressure acting on remaining forest areas across tropical, temperate and boreal biomes, there has emerged a coordinated effort to identify and protect forests that are currently considered “intact”. These forests are hypothesized to be more resilient to future abiotic perturbations than fragmented or degraded forests, and therefore, will provide more reliable carbon storage and/or biodiversity services into an uncertain future. Research in the fields of contemporary and paleoecology can offer valuable insights to enhance our ability to assess resilience of forests and whether these would be comparable across forest biomes. Contemporary ecological monitoring has been able to capture processes acting over the short-to-medium term, while paleoecological methods allow us to derive insights of the long-term processes affecting forest dynamics. Recent efforts to both identify intact forests, based on area definitions, and assess vegetation climate sensitivity globally have relied on satellite imagery analysis for the time period 2000–2013. In this paper, we compare these published datasets and do find that on average intact forests in boreal and tropical biomes are less sensitive to temperature and water availability, respectively; however, the patterns are less clear within biomes (e.g., across continents). By taking a longer perspective, through paleoecology, we present several studies that show a range of forest responses to past climatic and human disturbance, suggesting that short-term trends may not be reliable predictors of long-term resilience. We highlight that few contemporary and paleoecology studies have considered forest area when assessing resilience and those that have did find that smaller forest areas exhibited greater dynamism in species composition, which could be a proxy for declining resilience. Climatic conditions in the Anthropocene will be pushing forest systems across biomes into novel climates very rapidly and with current knowledge it is difficult to predict how forests will react in the immediate term, which is the most relevant timeframe for global efforts to reduce carbon emissions
    corecore