1,292 research outputs found

    A neural circuit model of decision uncertainty and change-of-mind

    Get PDF
    Decision-making is often accompanied by a degree of confidence on whether a choice is correct. Decision uncertainty, or lack in confidence, may lead to change-of-mind. Studies have identified the behavioural characteristics associated with decision confidence or change-of-mind, and their neural correlates. Although several theoretical accounts have been proposed, there is no neural model that can compute decision uncertainty and explain its effects on change-of-mind. We propose a neuronal circuit model that computes decision uncertainty while accounting for a variety of behavioural and neural data of decision confidence and change-of-mind, including testable model predictions. Our theoretical analysis suggests that change-of-mind occurs due to the presence of a transient uncertainty-induced choice-neutral stable steady state and noisy fluctuation within the neuronal network. Our distributed network model indicates that the neural basis of change-of-mind is more distinctively identified in motor-based neurons. Overall, our model provides a framework that unifies decision confidence and change-of-mind

    Is there an orthographic boost for ambiguous words during their processing?

    Get PDF
    The present study explores the issue of why ambiguous words are recognized faster than unambiguous ones during word recognition. To this end we contrasted two different hypotheses: the semantic feedback hypothesis (Hino and Lupker in J Exp Psychol Hum Percept Perform 22:1331-1356, 1996. https://doi.org/10.1037/0096-1523.22.6.1331 ), and the hypothesis proposed by Borowsky and Masson (J Exp Psychol Learn Mem Cognit 22:63-85, 1996. https://doi.org/10.1037/0278-7393.22.1.63 ). Although both hypotheses agree that ambiguous words benefit during recognition in that they engage more semantic activation, they disagree as to whether or not this greater semantic activation feeds back to the orthographic level, hence speeding up the orthographic coding of ambiguous words. Participants were presented with ambiguous and unambiguous words in two tasks, a lexical decision task (LDT) and a two-alternative forced-choice task (2AFC). We found differences between ambiguous and unambiguous words in both the LDT and the 2AFC tasks. These results suggest that the orthographic coding of ambiguous words is boosted during word processing. This finding lends support to the semantic feedback hypothesis.This research was funded by the Spanish Ministry of Economy and Competitiveness (PSI2015-63525-P) and by the Research Promotion Program of the Universitat Rovira i Virgili (2016PFR-URV-B2-37). This has also been partially supported by the FCT (Foundation for Science and Technology) through the state budget with Reference IF/00784/2013/CP1158/CT0013. The first author also holds a grant from the Universitat Rovira i Virgili (2015PMF-PIPF-16)

    Annexin A2 antibodies but not inhibitors of the annexin A2 heterotetramer impair productive HIV-1 infection of macrophages in vitro

    Get PDF
    During sexual transmission of human immunodeficiency virus (HIV), macrophages are initial targets for HIV infection. Secretory leukocyte protease inhibitor (SLPI) has been shown to protect against HIV infection of macrophages through interactions with annexin A2 (A2), which is found on the macrophage cell surface as a heterotetramer (A2t) consisting of A2 and S100A10. Therefore, we investigated potential protein-protein interactions between A2 and HIV-1 gp120 through a series of co-immunoprecipitation assays and a single molecule pulldown (SiMPull) technique. Additionally, inhibitors of A2t (A2ti) that target the interaction between A2 and S100A10 were tested for their ability to impair productive HIV-1 infection of macrophages. Our data suggest that interactions between HIV-1 gp120 and A2 exist, though this interaction may be indirect. Furthermore, an anti-A2 antibody impaired HIV-1 particle production in macrophages in vitro, whereas A2ti did not indicating that annexin A2 may promote HIV-1 infection of macrophages in its monomeric rather than tetrameric form

    Smart Phone, Smart Science: How the Use of Smartphones Can Revolutionize Research in Cognitive Science

    Get PDF
    Investigating human cognitive faculties such as language, attention, and memory most often relies on testing small and homogeneous groups of volunteers coming to research facilities where they are asked to participate in behavioral experiments. We show that this limitation and sampling bias can be overcome by using smartphone technology to collect data in cognitive science experiments from thousands of subjects from all over the world. This mass coordinated use of smartphones creates a novel and powerful scientific “instrument” that yields the data necessary to test universal theories of cognition. This increase in power represents a potential revolution in cognitive science

    Observation and study of baryonic B decays: B -> D(*) p pbar, D(*) p pbar pi, and D(*) p pbar pi pi

    Get PDF
    We present a study of ten B-meson decays to a D(*), a proton-antiproton pair, and a system of up to two pions using BaBar's data set of 455x10^6 BBbar pairs. Four of the modes (B0bar -> D0 p anti-p, B0bar -> D*0 p anti-p, B0bar -> D+ p anti-p pi-, B0bar -> D*+ p anti-p pi-) are studied with improved statistics compared to previous measurements; six of the modes (B- -> D0 p anti-p pi-, B- -> D*0 p anti-p pi-, B0bar -> D0 p anti-p pi- pi+, B0bar -> D*0 p anti-p pi- pi+, B- -> D+ p anti-p pi- pi-, B- -> D*+ p anti-p pi- pi-) are first observations. The branching fractions for 3- and 5-body decays are suppressed compared to 4-body decays. Kinematic distributions for 3-body decays show non-overlapping threshold enhancements in m(p anti-p) and m(D(*)0 p) in the Dalitz plots. For 4-body decays, m(p pi-) mass projections show a narrow peak with mass and full width of (1497.4 +- 3.0 +- 0.9) MeV/c2, and (47 +- 12 +- 4) MeV/c2, respectively, where the first (second) errors are statistical (systematic). For 5-body decays, mass projections are similar to phase space expectations. All results are preliminary.Comment: 28 pages, 90 postscript figures, submitted to LP0

    A search for the decay modes B+/- to h+/- tau l

    Get PDF
    We present a search for the lepton flavor violating decay modes B+/- to h+/- tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472 million BBbar pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the tau four-momentum. The resulting tau candidate mass is our main discriminant against combinatorial background. We see no evidence for B+/- to h+/- tau l decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata's responses to herbivory

    Get PDF
    BAK1 is a co-receptor of brassinosteroid (BR) receptor BRI1, and plays a well-characterized role in BR signalling. BAK1 also physically interacts with the flagellin receptor FLS2 and regulates pathogen resistance. The role of BAK1 in mediating Nicotiana attenuata's resistance responses to its specialist herbivore, Manduca sexta, was examined here. A virus-induced gene-silencing system was used to generate empty vector (EV) and NaBAK1-silenced plants. The wounding- and herbivory-induced responses were examined on EV and NaBAK1-silenced plants by wounding plants or simulating herbivory by treating wounds with larval oral secretions (OS). After wounding or OS elicitation, NaBAK1-silenced plants showed attenuated jasmonic acid (JA) and JA-isoleucine bursts, phytohormone responses important in mediating plant defences against herbivores. However, these decreased JA and JA-Ile levels did not result from compromised MAPK activity or elevated SA levels. After simulated herbivory, NaBAK1-silenced plants had EV levels of defensive secondary metabolites, namely, trypsin proteinase inhibitors (TPIs), and similar levels of resistance to Manduca sexta larvae. Additional experiments demonstrated that decreased JA levels in NaBAK1-VIGS plants, rather than the enzymatic activity of JAR proteins or Ile levels, were responsible for the reduced JA-Ile levels observed in these plants. Methyl jasmonate application elicited higher levels of TPI activity in NaBAK1-silenced plants than in EV plants, suggesting that silencing NaBAK1 enhances the accumulation of TPIs induced by a given level of JA. Thus NaBAK1 is involved in modulating herbivory-induced JA accumulation and how JA levels are transduced into TPI levels in N. attenuata

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
    corecore