32 research outputs found

    Generation of Immortal Cell Lines from the Adult Pituitary: Role of cAMP on Differentiation of SOX2-Expressing Progenitor Cells to Mature Gonadotropes

    Get PDF
    The pituitary is a complex endocrine tissue composed of a number of unique cell types distinguished by the expression and secretion of specific hormones, which in turn control critical components of overall physiology. The basic function of these cells is understood; however, the molecular events involved in their hormonal regulation are not yet fully defined. While previously established cell lines have provided much insight into these regulatory mechanisms, the availability of representative cell lines from each cell lineage is limited, and currently none are derived from adult pituitary. We have therefore used retroviral transfer of SV40 T-antigen to mass immortalize primary pituitary cell culture from an adult mouse. We have generated 19 mixed cell cultures that contain cells from pituitary cell lineages, as determined by RT-PCR analysis and immunocytochemistry for specific hormones. Some lines expressed markers associated with multipotent adult progenitor cells or transit-amplifying cells, including SOX2, nestin, S100, and SOX9. The progenitor lines were exposed to an adenylate cyclase activator, forskolin, over 7 days and were induced to differentiate to a more mature gonadotrope cell, expressing significant levels of α-subunit, LHβ, and FSHβ mRNAs. Additionally, clonal populations of differentiated gonadotropes were exposed to 30 nM gonadotropin-releasing hormone and responded appropriately with a significant increase in α-subunit and LHβ transcription. Further, exposure of the lines to a pulse paradigm of GnRH, in combination with 17β-estradiol and dexamethasone, significantly increased GnRH receptor mRNA levels. This array of adult-derived pituitary cell models will be valuable for both studies of progenitor cell characteristics and modulation, and the molecular analysis of individual pituitary cell lineages

    A GRFa2/Prop1/Stem (GPS) Cell Niche in the Pituitary

    Get PDF
    BACKGROUND: The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. PRINCIPAL FINDINGS: We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. SIGNIFICANCE: Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease

    Burden of community-acquired and nosocomial rotavirus gastroenteritis in the pediatric population of Western Europe: a scoping review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rotavirus affects 95% of children worldwide by age 5 years and is the leading cause of severe dehydrating diarrhea. The objective of this review was to estimate the burden of rotavirus gastroenteritis (RVGE) in the Western European pediatric population.</p> <p>Methods</p> <p>A comprehensive literature search (1999-2010) was conducted in PubMed and other sources (CDC; WHO, others). Data on the epidemiology and burden of RVGE among children < 5 years-old in Western Europe --including hospital-acquired disease--were extracted.</p> <p>Results</p> <p>76 studies from 16 countries were identified. The mean percentage of acute gastroenteritis (AGE) cases caused by rotavirus ranged from 25.3%-63.5% in children < 5 years of age, peaking during winter. Incidence rates of RVGE ranged from 1.33-4.96 cases/100 person- years. Hospitalization rates for RVGE ranged from 7% to 81% among infected children, depending on the country. Nosocomial RVGE accounted for 47%-69% of all hospital-acquired AGE and prolonged hospital stays by 4-12 days. Each year, RVGE incurred 0.540.54- 53.6 million in direct medical costs and 1.71.7-22.4 million in indirect costs in the 16 countries studied. Full serotyping data was available for 8 countries. G1P[8], G2P[4], G9P[8], and G3P[8] were the most prevalent serotypes (cumulative frequency: 57.2%- 98.7%). Serotype distribution in nosocomial RVGE was similar.</p> <p>Conclusions</p> <p>This review confirms that RVGE is a common disease associated with significant morbidity and costs across Western Europe. A vaccine protecting against multiple serotypes may decrease the epidemiological and cost burden of RVGE in Western Europe.</p

    Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System

    Get PDF
    The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials
    corecore