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The endocrine system coordinates a wide array of body functions mainly through

secretion of hormones and their actions on target tissues. Over the last decades, a

collective effort between developmental biologists, geneticists, and stem cell biologists

has generated a wealth of knowledge related to the contribution of stem/progenitor

cells to both organogenesis and self-renewal of endocrine organs. This review provides

an up-to-date and comprehensive overview of the role of tissue stem cells in the

development and self-renewal of endocrine organs. Pathways governing crucial steps

in both development and stemness maintenance, and that are known to be frequently

altered in a wide array of endocrine disorders, including cancer, are also described.

Crucially, this plethora of information is being channeled into the development of potential

new cell-based treatment modalities for endocrine-related illnesses, some of which have

made it through clinical trials.
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INTRODUCTION

Stem cells are endowed with the ability to self-renew and differentiate into various organ-specific
cell types. They are mainly active during embryogenesis where complex autocrine, paracrine, and
endocrine interactions govern their fate, proliferation, and gradual differentiation toward highly
organized tri-dimensional organs. A growing number of evidence indicates that populations of
stem cells are retained in most post-natal tissues (somatic or adult stem cells), where they exert
essential functions throughout life, namely tissue maintenance/self-renewal, remodeling/plasticity
in response to physiological demands as well as repair. By definition, adult stem cells have the
ability to self-renew, however their differentiation potential is restricted to the array of specialized
cell types corresponding to the organ in which they reside. The plasticity of the endocrine organs
has been recognized only recently, and our understanding has been propellered by (i) the use of
specific genetic mouse models, (ii) gene-discovery approaches for endocrine disorders, and (iii)
reprogramming strategies to obtain functional endocrine cells. The acquired knowledge of the
biology of endocrine organs is not only important for our understanding of pathological processes,
but also for the potential application of cell-based therapies or restoration of stem cell function.
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In this review, the role of stem cells in the endocrine system
will be covered, from the perspective of tissue development and
their function in tissue maintenance and organ plasticity. Recent
data showing potential to harness the properties of stem cells for
clinical applications is also reviewed.

THE PITUITARY GLAND

Endocrine Function in the Pituitary Gland
The pituitary gland is a small endocrine organ connected to
the hypothalamus and together they form the hypothalamo-
pituitary axis (HPA), which regulates vital physiological functions
such as growth, reproduction, lactation, metabolism, and stress-
responses (1). The pituitary gland can be separated into
adenohypophysis (anterior pituitary), including both the anterior
lobe (AL) and intermediate lobe (IL) derived from oral ectoderm,
and the neurohypophysis (posterior pituitary) also known as the
posterior lobe (PL) derived from neural ectoderm. In rodents the
two lobes remain distinct and are separated by a cleft, with an
epithelial lining known as the marginal zone (MZ). The PL is
populated by the axonal termini of hypothalamic magnocellular
neurons which release anti-diuretic hormone and oxytocin into
the blood circulation. The AL develops from oral ectoderm
and harbors five cell types: lactotrophs, producing prolactin
(PRL); somatotrophs, which release growth hormone (GH);
corticotrophs, which synthesize adrenocorticotrophic hormone
(ACTH); thyrotrophs, secreting thyroid-stimulating hormone
(TSH); and finally, gonadotrophs, which release luteinizing
hormone (LH) and follicle-stimulating hormone (FSH). A
further population of hormone secreting cells, melanotrophs,
are found in the IL and are responsible for the synthesis of
melanocyte-stimulating hormone (MSH).

Key Pathways Guiding Pituitary Gland
Development
The development of the pituitary gland can be separated into
three sequential steps, cell specification, cell lineage commitment
and terminal differentiation (Figure 1). In mice, pituitary
organogenesis begins at embryonic day (e) 8, with a thickening of
a region of the oral ectoderm, known as the hypophyseal placode
(HP) within the anterior neural ridge (ANR) and adjacent to
the ventral diencephalon (VD). By e9, an epithelial invagination
of the oral ectoderm, centered at the HP occurs forming a
rudimental pouch known as Rathke’s pouch (RP) (2). This
process is directed by physical contact with the overlaying region
of the VD known as the infundibulum, which eventually gives
rise to the hypothalamic median eminence, the pituitary stalk
and the PL (3). By e10.5 the infundibulum begins to evaginate
toward the RP and tightly regulated apoptosis separates the RP
from the underlying oral ectoderm (4). The lumen of the RP is
surrounded by a highly proliferative epithelial layer of pituitary
stem/progenitor cells (PSCs) (5). This cell population undergoes
a rapid expansion between e11.5 and e13.5 during which the
majority of endocrine cell precursors are generated (6). As these
RP progenitors gradually exit the mitotic cycle, they express
cell cycle inhibitors such as p57KIP2 and p27KIP1 and lose their
epithelial characteristics in order to give rise to distinct pituitary

cell types (7). By e14.5 PSCs are committed to one of the three
endocrine lineages (expressing transcription factors T-box Factor
19, Pituitary (Tpit) (8), or POU domain, class 1, transcription
factor 1 (Pit1)(9) or Steroidogenic Factor 1 (Sf1) (10), and as they
begin to differentiate they migrate ventrally and laterally away
from the RP lumen, forming the bulk of the AL, with the dorsal
progenitors of the RP forming the IL. The residual luminal space
of the RP, known as the cleft, and the periluminal MZ constitutes
a stem cell niche where multipotent PSCs are maintained into
adulthood (11–13). Terminal differentiation culminates shortly
after birth when, in rodents, the pituitary gland undergoes a
sustained perinatal period of proliferation and growth (14).

Patterning of the developing embryo and induction of the
pituitary primordium are regulated by a complex array of
sequentially expressed signaling molecules and morphogens.
Together, these act to demarcate different regions of the VD
(15) and control the developmental induction of the pituitary
gland. Bone morphogenetic protein-4 (Bmp4) is expressed and
secreted from the VD from e8.5; there it functions as an essential
extrinsic requirement for RP formation, and its expression is
maintained in the infundibulum up to e14.5 (16–19). Through
induction of T-box transcription factor 2 (Tbx2), Bmp4 represses
the expression of the morphogen sonic hedgehog (Shh) (20) and
opposing gradients of Bmp4 and Shh define the infundibular
region of the VD ensuring correct positioning of the RP. From
e10.5 Bmp2 is expressed in the developing RP and is essential for
RP maintenance and progenitor proliferation, before expression
is lost by e14.5 (6, 16, 17). Fibroblast growth factor (Fgf)- 8, -
10, and -18 are also expressed in the developing VD, appearing
shortly after Bmp4 and maintained until e14.5 (17, 19, 21).
Fgfs secreted by the VD activate the MAPK signaling pathway
to promote the maintenance and proliferation of the dorsal
region of the RP (6). Shh expression in the VD depends
on SRY-box transcription factor 2 (Sox2) and Sox3 (22), and
ensures the correct patterning of the region. The reciprocal
inhibition of Shh and Bmp4 is required for correct infundibular
positioning and induction of the RP. Consequently, ablation
of Shh expression in the VD has been shown to cause altered
expression of Bmp4, Wnt5a, and Fgf8 and a complete arrest
in pituitary formation from the early stages of development
(23, 24). Within the RP itself, Shh signaling is involved in
progenitor proliferation as revealed by conditional deletion of
its downstream transcriptional repressors Gli2 and Gli3 (25).
Notch signaling in pituitary development appears important for
infundibular morphogenesis, as mice null for the known target
of Notch, Hairy and Enhancer of Split-1 (Hes1) have reduced
evagination and disrupted development of the posterior lobe (26–
29). Within the RP, Notch signaling is initially widespread and
later restricted to the MZ (29, 30). There it promotes progenitor
proliferation and maintenance (31), suppresses melanotroph and
corticotroph differentiation (32) and promotes the emergence of
the Pit1 lineage through integration with the transcription factor
Homeobox Protein prophet of Pit1 (Prop1) (29, 33).

Wnt5a is expressed in both the VD and RP from e9.5 to e12.5
and is necessary for correct VD patterning, and indirectly for RP
induction via non-canonical pathway (34). Wnt4 also signals via
the non-canonical Wnt pathway, is expressed exclusively in the
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FIGURE 1 | Morphogenesis of the mouse pituitary gland. Abbreviations: AL, anterior lobe; ANR, anterior neural ridge; IL, intermediate lobe; Inf, infundibulum; MZ,

marginal zone; PL, posterior lobe; RP, Rathke’s Pouch; VD, ventral diencephalon.

RP, and appears to function in cell commitment since its deletion
reduces the expression of Pit1 resulting in fewer somatotrophs,
lactotrophs, and thyrotrophs (34). Canonical Wnt/β-catenin
also plays an important role in pituitary development, and
conditional gain or loss of function studies of β-catenin within
the VD showed its role in regulating the expression of Fgf8,
necessary for normal RP development (35). Within the RP, β-
catenin has a role in Pitx2 activation stimulating progenitor
proliferation (36) and later binds Prop1 and is necessary
for the emergence of Pit1 lineage of endocrine cells (37).
Further downstream of Wnt signaling, the transcription factor
binding partners of β-catenin, Transcription factor Tcf3, Tcf4,
and Lymphoid Enhancer Binding Factor 1 (Lef1), also play
a role in pituitary development. Tcf3 acts as a repressor of
the Wnt/β-catenin pathway in the anterior forebrain (38) and
is essential for the development of the HPA in both human
and mice (39). Tcf4 genetic ablation leads to an increase in
early progenitor proliferation with increased and prolonged
expression of Prop1, which can lead to aberrant tissue growth
and tumor formation if not down-regulated (40–42). Genetic
ablation of Lef1 does not have similarly pronounced effects,
but its inhibition reduces Pit1 expression indicating a potential
role as a repressor of pituitary differentiation (37, 43). The
Wnt/β-catenin pathway is important in PSC proliferation and
maintenance and deregulation of this pathway lead to stem
cell-derived pituitary tumors. Activating mutations in β-catenin
drive adamantinomatous craniopharyngioma both in mouse and
humans (44, 45) and PSC Sox2+ cells have been shown to be the
tumor initiating cells that are responsive to oncogenic β-catenin.

In addition to the role of morphogens and signaling pathways,
the spatiotemporal expression patterns of transcription factors
during pituitary development have also been extensively studied,
particularly in the context of congenital forms of hypopituitarism
(Figure 2) (46). The paired-like homeodomain transcription
factor Homeobox Expressed in ES cells 1 (Hesx1) functions
as a transcriptional repressor through its interaction with the
transcriptional corepressor Transducin-Like Enhancer of Split 1
(Tle1) and is an important regulator of forebrain development
(47). It is also crucial for early pituitary development, with
Hesx1−/− mice showing multiple clefts and over proliferation

(48). Importantly, in the RP Hesx1 represses Prop1 expression
until e13.5 (48) when it is reciprocally downregulated by the
Prop1/β-catenin complex (37). Hesx1 also acts as a repressor of
the Wnt pathway, and it has been suggested that de-repression of
the Wnt pathway in the anterior neural plate and RP underlies
the phenotype of Hesx1−/− mice (48, 49). The closely related
Sine Oculis homeobox (Six) transcription factors Six3 and Six6
are expressed in both the VD and RP, with Six6 expression
maintained in the adult pituitary. Knockout studies have revealed
that both transcription factors are involved in the regulation of
progenitor proliferation, with Six6 acting a repressor of the cell
cycle inhibitor p27KIP1 (50), and Six3 serving as a repressor
of Wnt/β-catenin signaling (49). The paired homeodomain
proteins, Pitx1 and Pitx2, are two additional important regulators
of pituitary development expressed in the RPwhere they function
redundantly in the maintenance of RP progenitors (4) and
later play a role in thyrotroph function (51). Three different
members of the LIM-homeodomain transcription factors (Lhx2,
3 and 4) are expressed during pituitary development. Lhx2 is
expressed throughout the RP and VD, and appears to function
in formation of the infundibulum, but is not involved in cell
differentiation (52). By contrast Lhx3 and Lhx4 are expressed
from e9.5 in the RP and are redundantly required for progenitor
maintenance, and later at e14.5 Lhx4 is downregulated whilst
Lhx3 expression is required for endocrine differentiation and
maintained into adulthood (53). As stated above, Sox2 and Sox3
are expressed in the VD where they activate the expression of
Shh (22) and of Six3/Six6 proteins (54, 55). Sox3 loss of function
mutations can result in mild hypopituitarism (56), as can Sox2
haploinsufficiency (57). In both Sox3−/− and Sox2+/− mice the
RP is bifurcated, and at least for Sox3−/− mutants this has
been associated with expanded Bmp4 and Fgf8 domains in the
VD (57, 58). This is likely a consequence of downregulation
of Shh (22) and perhaps Six3/6 also (54, 55). Prop1 represents
the earliest pituitary specific marker; it is first expressed at
e10, and maintained throughout development in the Sox2+

progenitor cells, before rapid post-natal downregulation in all but
a few Sox2+ PSCs (59–61). Prop1−/− mice have reduced Pit1
expression, and prolonged Hesx1 expression resulting in the loss
of somatotrophs, lactotrophs, and thyrotrophs (59, 60, 62). An
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important role of Prop1 is the regulation of the epithelial-to-
mesenchymal transition as progenitor cells migrate away from
the residual RP lumen and begin to undergo differentiation. In
the absence of Prop1, progenitors fail to populate the anterior
lobe resulting in a dysmorphic pituitary gland by e14.5 (63, 64).

Progenitor endocrine cell lineage commitment is defined
by the expression of three essential transcription factors Pit1,
Tpit, and Sf1 (Figure 2). The process of differentiation relies
on the activity of at least two epigenetic regulators, the histone
demethylase Lsd1 (65), and the zinc finger protein Insm1 (66).
Pit1 expression is activated by Prop1, in complex with β-
catenin (37) and is required for the differentiation as well as
the expansion and survival of lactotrophs, somatotrophs and
thyrotrophs (67, 68). Somatotrophs are further specified by
Neurod4 (29), and the Notch ligand Delta-Like homolog 1
(Dlk1) (69). In contrast lactotrophs are predominately specified
by estrogen signaling (70). Thyrotrophs can first be identified
by the expression of the transcription factor Forkhead Box L2
(Foxl2) and then α-Glycoprotein Subunit (αGSU) (19). Both are
also expressed in gonadotrophs. Subsequently, Gata2 is expressed
which can activate the expression of Chromogranin-A (Cga)
(71). Gonadotrophs are broadly similar to thyrotrophs in terms
of their expression of lineage commitment markers but can be
differentiated by their expression of Gonadotropin Releasing
Hormone Receptor Gnrhr (72) and later Sf1 which promotes
the expression of Cga, Fsh and Lh (73). Corticotrophs and
melanotrophs emerge from the Tpit (Tbx19) lineage (74, 75)
which are further defined by their expression of the transcription
factors Neuronal Differentiation 1 (NeuroD1) (76) and Paired
Box 7 (Pax7) (77), respectively.

Stem Cells in the Developing and Adult
Pituitary Gland
The past decade has seen a great deal of interest in
the characterization of PSCs and their function through
development to the maintenance of the adult gland, under
normal physiological conditions, periods of endocrine stress or
in pituitary disease (78–83). They are primarily identified by
their expression of Sox2, which drives rapid proliferation in the
lumen of RP during early development (84). By e13.5 the surge in
pituitary precursor proliferation subsides and Sox9 is expressed
alongside Sox2 in a subpopulation of PSCs (85). The AL also
harbors a secondary stem cell niche with clusters of Sox2+ PSCs
scattered through the parenchyma (46, 86). Functional analysis
of PSCs from these two different niches did not reveal obvious
differences (87). Intriguingly these two disparate populations of
PSCs appear to be physically interconnected to form a three-
dimensional network, an architectural feature that hints at some,
as of yet undescribed, concerted function (88).

Building upon early in vitro studies (12), more recent in vivo
lineage tracing studies have demonstrated the multipotency of
Sox2/Sox9+ embryonic and adult PSCs and their contribution
to tissue homeostasis (85, 89). Intriguingly, under normal
physiological conditions adult PSCs are highly quiescent and
largely inactive (15, 17, 19, 23), which may reflect the low
tissue turnover rate of adult pituitary cells, relative to tissues

with more active stem cell pools (24); this questions the notion
of tissue maintenance as their function (17), particularly since
major depletion of adult PSCs did not affect tissue homeostasis
(90). More likely their primary function is to provide the
organ with plasticity and some regenerative capacity. Genetic
ablation of different endocrine cell populations induces PSCs
activation and replenishment of ∼60% of the targeted hormone
secreted cell type (25–28). However, this regenerative capacity
is limited, as it tails off rapidly with age (28) and there is at
least some contribution from endocrine cell proliferation and
trans-differentiation (26). Perhaps more importantly, PSCs are
also able to respond to physiological demand under periods
of endocrine stress: for instance, experimental adrenalectomy
leads to increases in Sox2+ PSCs-derived corticotrophs and
gonadotrophs (19, 29). Interestingly, if instead corticotrophs
were depleted gradually, then the progenitor pool was not
activated (30), suggesting that the loss of signal from the end
organ may be required for PSCs mobilization (29). During
pregnancy, the number and activity of lactotrophs rise in an
expansion partly driven by estrogen (31) and indeed treatment
of male mice with oestradiol causes a sharp rise in Sox2+

PSC proliferation, a finding also observed in experimental
gonadodectomy (19). The heightened activity of PSCs during
the neonatal expansion of the gland and production of new
endocrine cells is also clear, and they show increased proliferation
as well as multipotent differentiation capacity (91). The potential
involvement of PSCs in the subtler changes to the gland that
occur during puberty and sexual maturation is logical, but as of
yet unproven.

Stem Cells and Regenerative Medicine in
the Pituitary Gland
Recent advances in the in vitro recapitulation of pituitary
development highlight the potential of cell-based therapies to
revolutionize the treatment of hypopituitarism, which is defined
by the failure to secrete one or more pituitary hormones,
and typically requires lifelong hormone replacement therapy.
Pioneering work by Suga et al. reported the induction of
self-organizing RP-like structures from mouse ES-cells, which
contained corticotrophs and somatotrophs and were capable of
rescuing systemic glucocorticoid level in hypopituitary mice (92).
Mimicking pituitary development, their protocol involves the
induction of adjacent layers of non-neural head ectoderm and
hypothalamic neuroectoderm, which a follow up study showed
was also applicable to human embryonic stem cells (ESCs) (93).
Using an alternative approach, Dincer et al. were able to induce
a placodal fate in adherent hESCs cultures, ultimately producing
functional corticotrophs, that secreted ACTH after subcutaneous
implantation in mice (94). Preliminary attempts at generating
pituitary organoids from adult mouse PSCs have been performed,
though to date, these have lacked the degree of self-organization,
and functional hormone release achieved by their ESCs-
derived counterparts (95). Interestingly, in all strategies ACTH-
secreting cells are the predominant differentiated endocrine
cell type produced. Future work will likely focus on the
targeted generation of other hormone secreting cells, and move
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FIGURE 2 | Molecular regulation of pituitary gland development. A succession of transcription factors (black) and signaling molecules (blue) determine the

establishment of RP and the subsequent lineage specification and differentiation in the progenitor cells of the developing pituitary hormone-secreting cell types

characteristic of the mature anterior pituitary gland: corticotrophs (ACTH), gonadotrophs (FSH and LH), thyrotrophs (TSH), somatotrophs (GH), and lactotrophs (PRL).

The key lineage commitment makers are highlighted in red. Arrows indicate upstream relationships in molecular signaling pathways, not necessarily direct activation.

Red T-bar arrows denote repressive relationships. Abbreviations: ACTH, adrenocorticotropic hormone; AL, anterior lobe; FSH, follicle-stimulating hormone; GH,

growth hormone; IL, intermediate lobe; LH, luteinizing hormone; MZ, marginal zone; PL, posterior lobe; PRL, prolactin; RP, Rathke’s pouch, VD; Ventral diencephalon.

toward orthotopic transplants to investigate the degree to which
transplanted cells can integrate into the regulatory circuitry
governing physiological hormone secretion.

ADRENAL CORTEX

Endocrine Function and Key Pathways
Guiding Adrenal Cortex Development
The adrenal cortex is essential for life. It is the primary site of
steroid synthesis, producing glucocorticoids under the control
of the HPA and mineralocorticoids under the control of the
renin-angiotensin-aldosterone system (RAAS). Glucocorticoids
regulate glucose metabolism, inflammation, immune responses,
muscle and skeletal mass as well as cognition, well-being and
memory, while mineralocorticoids control extracellular fluid
volume and sodium homeostasis, and hence have an important
influence on blood pressure.

The adrenal cortex originates from a group of cells within
the dorsal coelomic epithelium at ∼e9.0 in mice and 3–
4 weeks in humans (Figure 3). These cells form the so-
called adrenogonadal primordium (agp) and express the master
regulator of adrenocortical differentiation and function, namely
Steroidogenic factor-1 (Sf1, encoded by Nuclear Receptor
Subfamily 5 Group A Member 1 -Nr5a1) (96). Sf1+ cells
delaminate from the coelomic epithelium and invade the
overlying mesonephric mesenchyme. The agp then separates
forming the adrenal anlagen migrating dorsomedially and
the gonadal anlagen, which settles dorsolaterally. Genetic and

molecular evidence have demonstrated that the transcription co-
factor Cbp/P300-Interacting Transactivator 2 (Cited2) interacts
with the transcription factor Wilms Tumor 1 (Wt1) to stimulate
expression of Sf1 in the agp prior to the separation between
gonadal and adrenal primordia (97). The adrenal primordium
is then invaded by migratory neural crest- and Schwann cell
precursors-derived cells that will form the neuroendocrine
medulla (see section on adrenal medulla). Subsequently the
gland becomes encapsulated by mesenchymal cells. The cortex
is composed of fetal adrenal cells that are established before the
outer definitive adrenal population emerges between the capsule
and fetal adrenal. Functional zonation is completed around birth.
A crucial lineage relationship between fetal adrenal cells and
adrenal capsular cells to the differentiated adrenal cortex was
determined using specific Cre lines permitting the identification
of cells that have at some time actively expressed Nr5a1 under
control of the fetal adrenocortical-specific enhancer (FAdE), an
essential element in driving andmaintaining Sf1 expression in the
fetal cortex. These experiments indicated that a subset of capsular
cells are indeed descendants of fetal adrenocortical cells that once
expressed Nr5a1 (98).

Stem Cells and Self-Renewal in the
Adrenal Cortex
The adrenal cortex undergoes a self-renewal process and
important paracrine effectors supporting a dynamic centripetal
streaming of adrenocortical cells have been identified with the
use of specificmouse transgenicmodels (99). Adrenocortical self-
renewal in the experimental animal relies on the differentiation
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FIGURE 3 | Schematic representation of adrenal gland development. Cells from the adrenogonadal primordium (agp) form the adrenal and gonadal anlage. The

adrenal anlage is invaded by migrating medullary progenitors who derive from early migrating neural crest-derived cells (NCCs, a minority in mice) and from late

migrating Schwann cell precursors (SCPs). Concomitantly, the adrenal is encapsulated by mesenchymal cells. During late embryogenesis, definitive adrenal cells

appears and will substitute fetal adrenal cells. IML: intermediolateral column (IML); NT, neural tube; n, notochord.

of at least two cell populations of progenitor cells, located in
capsular and subcapsular compartments (Figure 4). It was shown
that Shh is expressed in Sf1+ but relatively undifferentiated
cortical cells in the subcapsular region of the mouse (100,
101) and rat (102) adrenal starting from e12.5 and e13.5,
respectively. Capsule cells transduce the Shh signal, and lineage-
tracing studies have shown that Gli1+ capsular cells delaminate
into the cortex, lose their responsiveness to Shh, and become
Shh+/Sf1+ progenitor cells; they then proceed to become fully
mature steroidogenic cells forming the distinct histological and
functional layers: zona glomerulosa (ZG, secreting aldosterone
and expressing aldosterone synthase, encoded by Cyp11b2)
and zona fasciculata (ZF, secreting glucocorticoids, expressing
11βhydroxylase, encoded by Cyp11b1) (100). Capsular Gli1+

cells and subcapsular Shh+ cells are therefore two interconnected
types of adrenocortical progenitor cells; recently however it has
been shown that the relative impact of capsular and subcapsular
progenitor cells in generating new steroidogenic cells is extremely
unbalanced post-natally with cortical Shh progenitor cells being
preponderant in generating steroidogenic cells compared to the
capsular Gli1 population (103).

Another player in the gland self-renewal is paternally
expressed Dlk1/Preadipocyte Factor-1 (Pref1), a cleavable
single-pass transmembrane protein and a member of the
Notch/Delta/Serrate family. A number of experimental
evidence suggest that Dlk1 may be involved in adrenocortical
differentiation: (i) Dlk1 is expressed in Shh+/Sf1+ progenitor
cells in rat adrenals (104), (ii) Dlk1 regulates Gli1 levels in H295R

cells, possibly through the secreted ectodomain Dlk1 and in
a β1-integrin dependent fashion (104), (iii) its expression was
found to be inversely correlated to the differentiation status of the
ZG following remodeling of RAAS rats (104), (iv) its potential
cross-talk with subcapsular Fgf signaling, as Fgfr2IIIb knock-out
mice showed hypertrophic capsule and absence of capsular
Dlk1 expression (105), and (v) its rapid disappearance after
adrenal enucleation in rats and reappearance once zonation is
restored (106). These data suggest that Dlk1 might be a negative
regulator of adrenocortical differentiation, similarly to its well-
established role in inhibiting adipogenesis (107). Interestingly,
while Dlk1 is expressed in the subcapsular region of rat (104)
and human (108) adrenals, it is mostly expressed in capsular
cells in mice (105, 109). It is not currently known whether Dlk1
is co-expressed with Gli1+ progenitor cells in the capsule, or
whether Dlk1 and Gli1 mark two different populations.

The lineage relationship between fully differentiated ZG
and ZF cells during post-natal life and during regeneration
was established with the development of a specific mouse
model where Cre recombinase was targeted to the Cyp11b2
genomic locus (110). Genetic lineage tracing with these mice
demonstrated that ZG cells can lineage convert to ZF cells in a
Sf1 dependent manner, and these cells can mark the whole ZF in
a period of 12 weeks, suggesting a relatively slow self-renewing
process in the mouse adrenal cortex. However, as Cyp11b2
knock-out mice are still able to generate ZF cells, alternative
and/or facultative cell sources active in sustaining ZF self-renewal
(and therefore crucial in preserving homeostatic cortisol levels)
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FIGURE 4 | Schematic representation of post-natal adrenal cortex centripetal streaming and self-renewal in mice. Gli1+ cells in the capsule can give rise to

Sf1+/Shh+ cortical cells: both are self-renewing adrenocortical progenitor cell populations. Shh+ cells can become ZG cells, and ZG cells can lineage convert to ZF

cells, which migrate centripetally. Direct differentiation between Shh+ cells and ZF is probably occurring in parallel. These differentiation events are governed by

pathways mostly active in the capsular/subcapsular region, while apoptotic figures are observed at the cortex/medulla boundary in senescence cells.

must be present, one example of such could be a subset of
capsular/subcapsular progenitors able to directly differentiate
toward a ZF identity.

Compelling evidence of the importance of other pathways
in adrenocortical growth, self-renewal and zonation, has also
been provided; for example, targeted disruption of β-catenin
in Sf1+ cells resulted in an impairment of adrenal cortex
development and maintenance in mice; this phenotype was
even more pronounced when a Cre transgene was expressed
at high levels, resulting in adrenal aplasia (111). Conversely,
constitutive β-catenin activation induced ZG adrenal hyperplasia
which ultimately led to adrenal cancer development in mice
(112). Wnt-responsive cells were found to be Shh+ progenitor
cells as well as differentiated, steroidogenic cells of the ZG,
but not the ZF, and rarely cells that were actively proliferating.
In vitro experiments also demonstrated that stimulation of
β-catenin signaling caused decreased corticosterone release;
this was corroborated by not only a reduced expression of
steroidogenic genes such as Cyp11a1, Cyp11b1, Star, and Mc2r,
but also by a diminished Sf1 expression and Sf1 occupancy
on steroidogenic promoters. Interestingly, Coiled-Coil Domain
Containing 80 (Ccdc80) was found to be a novel β-catenin-
regulated gene in adrenocortical cells, and secreted Ccdc80 could
partially phenocopy suppression of steroidogenesis induced by β-
catenin, in a Sf1-independent fashion (113).Wnt4 is key activator
of the pathway in the cortex and knock-out experiments in

mice demonstrated that capsular R-spondin3, a secreted protein
and a known positive regulator of Wnt/β-catenin pathway,
induces Wnt4 and Shh expression within steroidogenic cells
in the subcapsular compartment (114) and that its action is
strongly antagonized by protein kinase A (PKA) activation,
resulting in inhibition of ZG differentiation. PKA stimulation was
able to increase inactivating and decrease activating β-catenin
phosphorylation in adrenocortical cells in vivo. Therefore, it was
suggested that PKA activation in the ZF is a key driver of Wnt
inhibition and lineage conversion of cells to a ZG identity. The
same authors provided evidence that constitutive PKA activation
was able to inhibit β-catenin-induced ZG adrenal hyperplasia
and subsequent tumorigenesis in vivo (115). Constitutive PKA
activation, which was achieved by genetic deletion of the critical
component Protein Kinase cAMP-Dependent Type I Regulatory
Subunit Alpha (Prkar1a) was also found to be crucial for
conversion of ZF cell to a zona reticularis (ZR)-like phenotype,
seemingly via lineage conversion of the innermost ZF cells;
interestingly this process was found to be sexually dimorphic as
testicular androgens were shown to increase adrenocortical Wnt
signaling (antagonizing PKA), leading to slower adrenocortical
cell turnover and delayed ZR appearance whereas gonadectomy
sensitized males to hypercorticism and ZG-like formation (116).
More recently, a thorough study of adrenocortical self-renewal in
mice shed more light on this sexually dimorphic phenomenon:
genetic lineage tracing was achieved using Axin2 mouse model;
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Axin2 has been shown to reliably act as a readout for Wnt-
responsive cells, and, as such, it is a frequently-used marker of
functional stem cells. By comparing male and female mice, they
found that female mice had significantly higher proliferation
as well as turnover than males; moreover, in females but not
males, the capsule Gli1+ population was found to be more active
in generating new steroidogenic cells post-natally. Interestingly,
proliferation rates, cortex turn-over and recruitment of capsular
Gli1+ cells was enhanced in males following orchiectomy,
suggesting that androgens might inhibit full recruitment of
some adrenal cortex stem cell compartments; this was further
corroborated by showing inhibition of Gli1+ cells activation in
ovariectomised females treated with dihydrotestosterone. This
data is important as it might explain the biology behind the
higher incidence of adrenal diseases in females (117).

Important factors involved in adrenal cortex differentiation
and self-renewal under physiological conditions have also been
discovered by assessing mutation and changes in gene expression
in adrenocortical tumors. Two examples are the histone
methyltransferase Enhancer of Zeste Homolog 2 (Ezh2), the
most deregulated epigenetic factor in adrenocortical carcinomas
(118) and the transmembrane E3 ubiquitin ligase zinc and
ring finger 3 (Znrf3), a known Wnt inhibitor which is
frequently inactivated in adrenocortical carcinomas (119). Ezh2
was found to be an important epigenetic factor ensuring
the unidirectionality of differentiation events from ZG to ZF.
Targeted inactivation of Ezh2 inmouse adrenal cells was achieved
through the use of a Sf1Cre line crossed to a floxed Ezh2
allele; these mice had hypoplastic adrenal glands and developed
primary glucocorticoid insufficiency (low corticosterone, high
ACTH, normal aldosterone in female mice) with blunted
ZF differentiation (decreased Cyp11b1 mRNA expression),
suggesting that Ezh2 is a key regulator of ZF differentiation and
identity. This suggestion was proved by further experimental
data showing that Ezh2 not only programmed adrenocortical
cells to respond to ACTH via PKA signaling, but also inhibited
accumulation of capsular/pericapsular Gli1+ and Wt1/Gata4+

spindle-like pericapsular cells. Interestingly, these Gli1+ and
Wt1/Gata4+ fibroblastic-like cells, commonly seen in aged or
gonadectomised mice of specific backgrounds, were found to be
derived from steroidogenic (Sf1+) cells through a mechanism
involving dedifferentiation, rather than direct amplification of
capsular cell populations (120).

Znrf3 was found to be expressed in both ZG and ZF cells
in mice; adrenocortical-specific loss of Znrf3, achieved through
the use of both Sf1Cre and Cyp11b2Cre lines crossed to a
floxed Znrf3 allele, developed adrenal hyperplasia in the ZF in a
ACTH-independent manner with loss of normal adrenocortical
architecture; this phenomenon was found to be dependent on
Wnt signaling as genetic inactivation of Znrf3 together with
Porcupine (a key enzyme required for Wnt ligands maturation
and activity) displayed normal adrenal cortex architecture and
reduced ZF hyperplasia. The authors also found that Wnt4,
normally highly expressed in the ZG with a decreasing gradient
into the outer ZF, lost this characteristic expression pattern
and instead displayed moderate-level expression throughout the
entire ZF. Interestingly, this pattern was also altered for β-catenin

protein expression, as well as Axin2 mRNA, strongly suggesting
that loss of Znrf3 leads to increased Wnt/β-catenin in the ZF
promoting hyperplasia (121).

Stem Cells and Regenerative Medicine in
the Adrenal Cortex
There is an undeniable case for stem cell regeneration therapy
in adrenal insufficiency, however it is still in its infancy. Initial
experiments showed the ability to obtain a steroidogenic lineage
when Sf1 was forced-expressed in hESCs (122). Since then,
others have reported the conversion of mouse and human ESCs,
mesenchymal stem cells and inducible pluripotent stem cells
(IPSCs) into adrenocortical-like cells, all by over-expressing Sf1
[reviewed in (123)].

Our laboratory has devised a technology for the generation
of steroidogenic-like cells via reprogramming of skin-, blood-
and urine-derived cells in humans. Reprogramming was
achieved via forced expression of Sf1 through lentiviral
delivery, together with the activation of the protein kinase A
(PKA) pathway and in the presence of luteinising hormone
releasing hormone (LHRH). These reprogrammed cells had
ultrastructural features resembling steroid-secreting cells,
expressed steroidogenic enzymes and secreted steroid hormones
in response to physiological and pharmacological stimuli. They
were viable when transplanted into the mouse kidney capsule
and intra-adrenal. Importantly, the hypocortisolism observed
in cells derived from patients with adrenal insufficiency due to
congenital adrenal hyperplasia was rescued by expressing the
wild-type version of the defective disease-causing enzymes. This
study provided for the first time an effective tool with many
potential applications to study adrenal biology and pathobiology
in a personalized manner and opened up avenues for the
development of precision therapies (124). The main obstacle
to a clinical application of the strategies described above is the
absence of a protocol which allows derivation of (i) proper
adrenocortical-like cells from pluripotent stem cells or somatic
cells without overexpression of Sf1, and (ii) a cell population able
to self-renew similarly to the cortex.

ADRENAL MEDULLA

Endocrine Function of the Adrenal Medulla
The adrenal medulla is the inner part of the adrenal gland
and is mainly responsible for the synthesis and secretion
of catecholamines, such as epinephrine (adrenaline) and
norepinephrine (noradrenaline), both derived from the
aminoacidic tyrosine and stored in vesicles prior to secretion.
The main cell type of the adrenal medulla is the chromaffin
cell (or pheochromocytes), named as such because of the
affinity of catecholamines for chromium salts. The adrenal
medulla is highly innervated by preganglionic sympathetic
fibers. Epinephrine and norepinephrine are responsible for the
execution of the fight-or-flight response of the sympathetic
nervous system; such response involves (i) an increase in blood
pressure via binding and activation of α1 receptors on vascular
smooth muscle cells (resulting in vasoconstriction and increased
blood flow to muscles and brain); (ii) an increase in the heart
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rate and contractility, (iii) a relaxation of smooth muscles in
the airways (via β2-adrenoreceptors, to increase breathing), (iv)
an increase in glycaemia via activation of the glycogenolysis
pathway concomitant to stimulation of glucagon secretion via β2
receptors and decreasing of insulin secretion via α2 receptors in
the Islets of Langerhans.

Key Pathways Guiding Adrenal Medulla
Development
Until very recently, chromaffin cells were thought to be direct
derivates of neural crest, with a stream of neural crest-derived
cells migrating and committing to a common sympathoadrenal
lineage ending up in the vicinity of the dorsal aorta, where
they would proliferate and continue migrating either ventrally
(cells forming the adrenal medulla) or dorsally (cells forming
the sympathetic ganglion) (125, 126). In 2017 Furlan et al.,
using genetic lineage tracing approaches and genetic ablation,
convincingly showed that the majority of chromaffin cells derive
from a specific cell type, termed Schwann Cell Precursor (SCP)
(127) (Figure 3). SCPs are the earliest well-defined glial-like
cell population during peripheral nervous system development
(the radial glial being their corresponding identifiable precursor
in the central nervous system) and known multipotent stem
cells which can differentiate and generate different cell types,
such as the parasympathetic nervous system (128, 129). SCPs
themselves are a neural crest derivates which have undergone an
extensive change in gene expression with many glial-associates
genes (which are also expressed in Schwann cells) being activated.
SCPs appear in mouse at ∼e12.5; later in development, they
are also able to generate the so-called immature Schwann cells,
which differentiate to form Myelin- and Remak- (non-Myelin)
Schwann cells. SCPs have an intimate association with neurons
and their processes and are extremely dependent on axonal
signals for both migration, survival and differentiation, a feature
that is not shared by neural crest cells, which migrate more freely.
Over time, it has become clear that SCPs could generate direct
derivates which were of a different lineage to Schwann cells,
such as endoneurial fibroblasts (130), parasympathetic ganglia
(128, 129), melanocytes (131), and mesenchymal cells giving
rise to odontoblasts and tooth pulp cells (132). Furlan et al.
traced SCPs using neural crest and glial-specific inducible Cre
lines [Sox10 and the myelin component Proteolipid Protein 1
(Plp1)]. Injection of tamoxifen at e11.5 followed by analysis
at e17.5 showed that at least half of chromaffin cells in the
adrenal medulla derived from SCPs. The contribution of nerve-
associated SCPs was further corroborated by genetic ablation of
SCPs with diphtheria toxin subunit A, resulting in a significant
depletion of chromaffin cells which were able to migrate to
the adrenal medulla. Moreover, the dependency of adrenal
medulla formation on SCPs migration along nerves was elegantly
demonstrated by achieving specific ablation of preganglionic
motor neurons, resulting again in a strong (78%) reduction of
chromaffin cells, with the remaining chromaffin cells presumably
derived from earlier neural crest migrating cells. Another key
finding from this study is the demonstration of an early lineage
segregation of sympathoblasts and chromaffin cells, which

were until recently considered to originate from a common
sympathoadrenal progenitor (133, 134).

Stem Cells and Regenerative Medicine in
the Adrenal Medulla
The question of whether stem/progenitor cells with regenerating
abilities persist in the post-natal adrenal medulla has not
been extensively investigated. Initial in vitro studies showed
that cells with progenitor characteristics could be enriched
from bovine (135) and human (136) medullary extracts; these
cells could also generate spheres expressing progenitor cell
markers such as Nestin (a type IV intermediate filament
protein expressed in multipotent neural stem cells), CD133,
and Notch1. Subsequently, by using a Nestin–GFP transgenic
mouse model, it was shown that Nestin+ cells (accounting
6% of medullary cells) were negative for both Tyrosine-
hydroxylase and chromogranin A (two markers of differentiated
chromaffin cells), suggesting that Nestin was not expressed
by mature chromaffin cells. Isolated Nestin-GFP cells were
also able to generate spheres, which were able to differentiate
into chromaffin cells and neurons. This was also confirmed
in vivo where mice were subjected to repeated immobilization
stress; again, the progeny of Nestin+ cells, investigated using
an inducible nestin–Cre mouse line, was found to include
cells with glial, neuronal, and chromaffin identity (137).
Chromaffin-like cells have been recently derived from hESCs
via a multistep protocol involving first differentiation toward
neuroectoderm-like caudal neural progenitors via TGFβ and
GSK3β inhibition followed by establishment of neural crest
stem/progenitor cells neurospheres in the presence of Fgf2
and Bmp2. Further treatment of these neurospheres with
Bmp4 or with dexamethasone plus phorbol 12-myristate 13-
acetate (PMA) induced a strong up-regulation of markers of
mature chromaffin cells, such as tyrosine hydroxylase and
Phenylethanolamine N-methyltransferase (138). The generation
and culture of functional chromaffin-like cells could be employed
in the field of regenerative medicine, specifically in cases
of neuroendocrine/neurodegenerative diseases, and also for
pain management.

THYROID GLAND

Endocrine Function in the Thyroid Gland
The thyroid is a butterfly-shaped gland located in front of the
trachea. Its main function is to regulate body metabolism by
producing thyroid hormones T4 and T3 from iodine. Thyroid
tissue is composed by two cell types: follicular cells, responsible
of thyroid hormones secretion, and parafollicular cells (or C
cells), which secrete the hormone calcitonin, involved in calcium
regulation. The thyroid gland is controlled by the pituitary gland
through secretion of TSH which stimulates the thyroid gland to
produce more hormones.

Key Pathways Guiding Thyroid Gland
Development
Follicular cells arise from the thyroid anlage, a group of
foregut endodermal cells located on the midline of the posterior
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FIGURE 5 | Thyroid/Parathyroid development. Follicular thyroid progenitor cells (orange) derive from the midline thyroid anlage (mta), an endodermal tissue in the floor

of the pharynx just caudal to the 1st pharyngeal arch. The superior parathyroid glands (green) originate from the 4th brachial pouch while the inferior parathyroid (blue)

and the thymus develop from the 3rd brachial pouch. C cells (red) differentiate from the ultimobrachial body, below the 4th brachial pouch.

mouth cavity, while parafollicular cells differentiate from the
ultimobranchial bodies, a structure derived from the fourth
pharyngeal pouch in the developing neck (Figure 5). Recent
reports demonstrate that parafollicular C cells develop from
pharyngeal endoderm and not neural crest cells, as previously
suggested (139, 140). Using a dual mouse lineage tracing strategy,
Johansson and collaborators provided direct evidence that C
cells derive from Sox17-expressing endodermal progenitors and
not from Wnt1-expressing neural crest-derived progenitor cells
(141). Both cell types migrate from their original sites to form the
definitive thyroid gland (142, 143). During this process, thyroid
anlage cells bud by proliferation and invade the surrounding
mesenchyme. The thyroid primordium bifurcates bilaterally and
migrates toward the larynx and proximal trachea, a process
accompanied by intense thyroid progenitor proliferation. Once
the left and right thyroid lobes are formed, functional cellular
differentiation takes place, which in humans occur after the
eleventh week of gestation (144).

During early specification of thyroid cells, exclusive
cooperation of the transcription factors Haematopoietically-
Expressed Homeobox Protein (Hhex), NK2 Homeobox 1
(Nkx2-1, also known as thyroid transcription factor, Ttf1),
Pax8 and Forkhead Box E1 (Foxe1, also known as thyroid
transcription factor 2, Ttf2) have been shown to be essential
(145, 146). Indeed, genetic deletion of these transcription factors
individually resulted in severe thyroid hypoplasia or lack of
thyroid formation (147–151). Hhex plays a role in maintaining
total progenitor cell numbers in the budding epithelium, while it
is not required for thyroid precursor specification (145). Nkx2-1
is not essential for initial specification of the thyroid gland, but is

required for the development and morphogenesis. Nkx2-1−/−

mice develops a thyroid rudiment which degenerates through
apoptosis (152), highlighting its primordial role in pharyngeal
endoderm-derived tissues. Pax8 acts as a regulator of thyroid
precursor survival. Similar to Nkx2-1−/− mice, Pax8−/− animals
show a progressive degeneration of thyroidal primordium (145).
Finally, Foxe1 plays a role in migration of thyroid precursor
cells. Although the thyroid primordium is formed, progenitor
cells in Foxe1-null animals remain attached to the pharyngeal
floor whereas in wild-type embryos they are detached from
the pharynx cavity and begin to migrate (149). Altogether, the
coordinated expression and regulation of these key transcription
factors in a timely manner drives the generation, expansion and
migration of progenitor cells to form the definitive thyroid tissue.

Stem Cells and Self-Renewal in the Thyroid
Gland
The first indirect evidence that the thyroid gland was an
organ endowed with extremely slow self-renewal potential
was provided in 1974 through observation of follicular cell
proliferation (153). Subsequently, cell population kinetics was
studied in vivo in dog thyroids via bromodeoxyuridine
incorporation and in vitro in human thyroid slices, suggesting
a complete turnover of ∼8.5–14.4 years (154). These and other
studies in the 1980s led to the hypothesis of the existence of
an unknown number of resident adult stem cells in the thyroid
governing this slow self-renewal process (155). Initial efforts
to isolate thyroid stem cells in mice showed the existence of
a small pool of cells expressing the stem cell markers Oct4,
nucleostemin and the ATP binding cassette (ABC)-dependent
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transporter ABCG2 (the latter endowing cells with the ability
to efflux the vital dye Hoechst 33342, also referred to as side
population), while expressing low levels of differentiated thyroid
markers such as thyroglobulin, TSH receptor, thyroid peroxidase,
Pax8, or thyroid transcription factor 1 (Titf1). The same authors
also demonstrated that ABCG2-expressing cells were located in
the interfollicular space of the thyroid gland but not in cells lining
the follicles (156).

In humans, another evidence of the existence of thyroid stem
cells were reported by Thomas et al. (157); histologic staining
and cultured cells derived from goiters (abnormal enlargement
of the thyroid gland), showed a subset of cells expressing the
stem cell marker Oct4, and the early endodermal markers Gata4
and Hepatocyte Nuclear Factor 4α (HNF4α) markers while they
were negative for the differentiated cell marker thyroglobulin.
Interestingly, these markers were found not to be expressed
in the differentiated rat thyroid cell line FRTL5 cell line,
while they were expressed in undifferentiated thyroid carcinoma
cell lines.

Lan et al. isolated adult thyroid stem cells as side population
from human goiters by employing Hoechst 33342 staining
(expression of ABCG2) followed by fluorescence-activated cell
sorting (FACS). Those cells, which accounted for 0.1% of
the total cell population, showed stem cell morphological
characteristics (smaller in size and higher nucleus to cytoplasm
ratio compared with differentiated cells) and expression profiles
compatible with an undifferentiated population, and were
able to differentiate in vitro into thyroid cells upon TSH
treatment. Interestingly, spheres established from dissociated
thyroids were able to grow in vitro in a medium enriched
with Egf and bFgf but without TSH, and contained a 50-
fold enrichment of side population cells. When stem cells
isolated from these 3D structure (named thyrospheres) were
grown as monolayer or embedded in collagen, differentiation
under the influence of TSH was observed (expression of
Pax8, TG, NIS, TSHr, and TPO as well as 125 iodide
uptake in response to TSH). These data proved the ability
of adult human goiters-derived thyrospheres to differentiate
into functional thyroid cells (158). In 2008, Fierabracci and
collaborators generated spheroids in culture from human
healthy thyroids; their thyrospheres could self-replicate in
vitro and generate thyroid hormones upon differentiation
conditions (159).

Fgfs and Bmps are essential signaling pathways for thyroid
cell fate induction. Revest and collaborators reported lack
of thyroid glands in Fgfr2b-deficient mice (160). The same
phenotype was reported on Fgf10 knockout mice (161),
suggesting that Fgf10 could act as a Fgfr2b ligand during
thyroid development. Other Fgfs, like Fgf2 and Fgf8, have
been involved in thyroid development (162). In vitro studies
using mouse embryonic stem cells supports the evidence
of FGF signaling in differentiating thyroid cells. Longmire
and collaborators showed that Fgf2 and Bmp4 are required
to generate functional thyroid cells from human and
mouse ESCs/ iPSCs (163), reinforcing the notion that these
signaling pathways are important during development of the
thyroid glands.

Stem Cells and Regenerative Medicine in
the Thyroid Gland
Studies in thyroid regeneration after partial thyroidectomy (PTx)
showed that the central areas of both lobes act as the proliferative
centers (164). Microarray analysis performed after PTx reveal
increased expression of embryonic development pathways,
suggesting potential dedifferentiation events or activation of
resident stem/progenitor cells. Interestingly, levels of serum T4
hormone, which were decreased after PTx, recover to normal
after a week. Accordingly, increases in TSH were detected
after PTx to stimulate the gland to produce more T4. In fact,
TSH is known to play a role in promoting undifferentiated
progenitor/stem cells to transform into mature thyroid follicular
cells (158, 165).

Zhang and collaborators have postulated a model for the
origin of thyroid carcinoma from adult progenitor cells based on
their cell of origin and the levels of differentiation (166), however
the low turnover of thyroid gland cells make it difficult to study
the relationship between normal and thyroid cancer stem cells.

Several groups have generated thyroid progenitor and mature
functional thyroid cells from both mouse and human pluripotent
stem cells (163, 165, 167–169). Pioneering work by Arufe and
collaborators showed the ability of mouse ES cells to differentiate
toward thyroid follicular cells when cultured in serum-free
medium supplemented with TSH (165). In 2012, evidence of
in vivo functionality was demonstrated using mouse ES-derived
three-dimensional thyroid follicular cells. Differentiated cells,
obtained through transient overexpression of the transcription
factors Nkx2-1 and Pax8, were able to restore thyroid hormone
plasma levels once implanted into athyroid mice (170).

Modulation of Tgfβ, Bmp and Fgf signaling pathways lead
to the generation of primordial thyroid progenitor cells from
mESCs (163), that could be further matured to functional,
transgene-free thyroid follicular organoids able to secrete thyroid
hormones and rescue hypothyroid mice after transplantation
(168). Interestingly, iPSCs-derived human thyroid progenitor
cells were obtained from healthy donors and patients with
hypothyroidism (168). More recently, functional iPSCs-derived
human thyroid follicular cells showed the ability to express
thyroid proteins and secrete thyroxine in vitro (169).

PARATHYROID GLANDS

Endocrine Function in the Parathyroid
Glands
The parathyroid glands are four small glands that produce
and secrete parathyroid hormone (PTH) into the bloodstream.
Located behind the thyroid gland, parathyroid glands control
bodily calcium levels, playing a crucial role in regulating
nervous andmuscular systems, bone calcium release and calcium
reabsorption in the kidney.

Key Pathways Guiding Parathyroid Glands
Development
The parathyroids are endoderm-derived tissues that form from
the third and fourth pharyngeal pouches in humans (171),
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before migrating to the ventral midline of the pharyngeal and
upper thoracic region (Figure 5). Studies in mice demonstrated
a common origin of parathyroid and thymus cells in early
organogenesis. The parathyroid-thymus primordia separate
around e12.5 in mice during the ventral migration, a process
mediated by cell adhesion molecules and Bmp4 signaling
(172, 173). Expression of the transcription factor glial cells
missing 2 (Gcm2) is essential for parathyroid specification.
Gcm2−/− mice lack parathyroid glands and develop primary
hypoparathyroidism (174) and human Gcm2 mutations have
been associated with dysregulated parathyroid hormonal levels
(175, 176). Gcm2 expression and patterning in the developing
parathyroid gland is tightly controlled by Shh signaling
(177, 178). Shh controls the expression of the transcription
factors Tbx1 and Gata3 that, together with Gcm2, restrict the
parathyroid cell fate of the third pharyngeal pouch (179). Indeed,
Shh−/− mice showed smaller, aparathyroid primordia, due to the
inability to activate Gcm2 expression. Moreover, Shh was found
to be active in both dorsal endoderm and the adjacent neural-
crest derived mesenchyme. Bain and collaborators showed
evidence that Shh signals from both tissues promote parathyroid
specification and organogenesis (180).

Stem Cells in the Parathyroid Glands
Resident adult stem cells in the parathyroids have been poorly
characterized. Human parathyroid-derived stem cells (hPDSCs)
were isolated from surgically removed parathyroid glands via
enzymatic digestion (181). In vitro, selected clones of hPDSCs
showed characteristic of adult stem cells as they: (i) could
differentiate toward osteogenic, chondrogenic and adipogenic
lineages using appropriate induction media, (ii) were positive for
mesenchymal stem cell markers and negative for hematopoietic
and endothelial markers, (iii) and showed telomerase activity and
self-renewal capacity.

Hyperparathyroidism usually occurs due to clonal
parathyroid hyperplasia or adenomas of the gland (182, 183).
Parathyroid tissue from 20 patients with hyperparathyroidism
showed clonal cellular expansion of resident stem cells in
both malignant and benign parathyroid tumors, assessed by
immunohistochemistry and FAC-sorting for the tumorigenic
stem cell makers CD44/CD24 (184). The authors suggested
the involvement of a population with stem cell markers in the
development of parathyroid hyperplasia.

Stem Cells and Regenerative Medicine in
the Parathyroid Glands
Differentiation of parathyroid-like cells from pluripotent stem
cells has been achieved in vitro using mESCs. Bingham et al.
reported the generation of parathyroid hormone (PTH)-
secreting cells expressing both intermediate endoderm
progenitor markers (Cxcr4, Eya1, Six1, and Pax2) and
parathyroid-specific markers (glial cell missing-2 [Gcm2],
CCL21, calcium sensing receptor [CaSR], and PTH) (185).

FIGURE 6 | Schematic representation of testis and ovary development. Cells

from the adrenogonadal primordium (agp) form the gonadal anlagen. The

gonadal anlagen is invaded by migrating primordial gem cells that derive from

the region of the forming hindgut. Expression of Sry/Sox9, and Wnt4/Foxl2

determine gonad differentiation into testis or ovaries, respectively.

GONADS

Shared Developmental Stages of the
Gonads
The gonads and the adrenal cortex originate from the agp (see
above, adrenal cortex section). Gonadal primordia develop as
paired thickenings of the coelomic epithelium known as the
urogenital ridge (Figure 6). Initially, the mammalian gonads
develop identically in both female and male embryos. The early
mammalian gonad is in fact an undifferentiated primordium
composed of bipotential precursor cells that can follow one
of two possible fates to become either a testis or an ovary.
In mice, development of the urogenital ridge starts at around
e11 and continues until e11.5-12.0 when sexual differentiation
begins. Primordial germ cells (PGCs) (the precursors of oocytes
and spermatozoa in the ovaries and testes, respectively) do not
arise within the ridge but migrate from an entirely separate
source; at around e7, PGCs are seen in mice in the region of
the forming hindgut. The appearance of PGCs is concomitant
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with increase in the activity of Bmp2, Bmp4, and Bmp8. Early
studies showed that ablation of Bmp4 (186) and Bmp2 (187) in
mouse embryo resulted in lack and severe reduction of PGCs
number, respectively.

Between around e9.0 and e11.5, PGCs migrate to the genital
ridge (188, 189). During migration and after settling in the gonad
the PGCs divide mitotically, and their number increases rapidly.
By e13.5 the genital ridge contains thousands PGCs from an
initial population of 10–100 in mice (190).

TESTIS

Key Pathways Guiding Testis Development
In the male gonad, PGCs give rise to T1-prospermatogonia
and enter G0 mitotic arrest, a state in which they remain until
after birth (191). T1-prospermatogonia resume proliferation
during the first week after birth when they become T2-
prospermatogonia and migrate to the seminiferous tubules’
basement membrane. These cells give rise to the first round
of spermatogenesis concomitant with the establishment of the
initial pool of Spermatogonial Stem Cells (SSCs) that maintain
spermatogenesis throughout post-pubertal life (192).

Differentiation of testis is marked by polarization of gonadal
somatic Sertoli cells that form epithelial aggregates around germ
cells. This process leads to the reorganization of the gonad
into two compartments: the tubular testis cords (referred to
as seminiferous tubules after birth), which consist of Sertoli
cells and germ line cells, and the interstitial space between
the cords, which contains Leydig cells (producing testosterone
under the action of LH) and vasculature. Peritubular myoid cells
surround Sertoli cells and deposit a basal lamina at the periphery
of the tubular structures (193). Post-natally, Sertoli cells form
tight junctions with each other that compartmentalize the
seminiferous epithelium into basal and adluminal compartments.

In mammals, testis differentiation depends on gonadal
expression of the Y-linked gene Sry, a transcription factor
initiating Sertoli cell differentiation. By e11 in mice and 41–
44 days post-ovulation in humans, Sry is detected specifically
in Sertoli cells (194). Its expression is restricted between e11
and e13 in mice, whilst it is maintained at low levels during
gestation in humans. Interestingly, testis-cord formation occurs
between e12.5 and e13, a little later than when Sry is detected.
Differentiation of testis seems dependent on a critical threshold
of Sry-expressing cells. About 10% of Sertoli cells were found
not express Sry in testes of chimeric XX↔XY embryos, while
gonads composed of <30% Sry-expressing cells developed as
ovaries (195). Experiments with transgenic mice demonstrated
that the early male marker Sox9 is up-regulated by the transient
expression of Sry specifically in Sertoli cell precursors (196).
More recently, this was confirmed by the generation of a mouse
antibody against Sry (197). Further studies revealed that Sry
binds to multiple elements within Sox9 enhancer in mice and
it does so along with Sf1 (198). The activation of a network of
genes downstream of Sox9 then promotes male development
while simultaneously blocking the genes that drive ovarian
development [reviewed by (199)].

The fact the Sf1 is essential for gonadal development is
widely accepted (200). During the early phase of proliferation
(e11.5-12.0) Sertoli cells (and interstitial cells) derive from the
division of cells expressing Sf1 of the coelomic epithelium. Sf1 is
subsequently downregulated (or completely lost) in the coelomic
epithelium and proliferation continue in Sf1− cells at and below
the coelomic epithelium to produce only interstitial cells (201).

The importance of Sry in testis development is highlighted
by numerous mutations causing sexual-development disorders
(202), yet little is known about its regulation. Nevertheless, three
key transcription factors, Gata4, Friend of Gata protein 2 (Fog2)
and Wt1, have been implicated in the transcriptional or post-
transcriptional regulation of the gene [reviewed by (202)].

Stem Cells and Self-Renewal in Testis
Spermatogenesis, the process that throughout the life of males
produces sperm, represents a typical example of a supported
stem cell system. Spermatogenesis occurs in the seminiferous
tubules where spermatogonia that reside on the basement
membrane undergo self-renewal divisions and proliferate to form
spermatogonial clusters. In rodents, three types of spermatogonia
have been identified, namely Type A, intermediate and B. Type
A cells are the most undifferentiated and have been classified by
morphological analysis into Asingle (As, isolated cells), Apaired
(Apr, chain of two connected cells), or Aaligned (Aal, chain of
4, 8 or 16 or more cells), that remain connected by intercellular
bridges due to incomplete cytokinesis (Figure 7). According to
the prevailing theory in the field, known as the ‘As model’,
spermatogonial stem cells (SSCs) are As cells (roughly 0.03%
of the total number of spermatogonia) that divide into two
daughter Apr spermatogonia which further divide into Aal
spermatogonia (203, 204). Aal spermatogonia are the source
of primary spermatocytes that will enter meiosis and further
develop into haploid spermatids and sperm (205). Nevertheless,
further studies have revealed that morphology alone is not
sufficient to characterize spermatogonial cells. Undifferentiated
spermatogonia were firstly identified as being negative for
the surface receptor Kit (206, 207). However, more recent
studies have revealed a more heterogeneous characterization of
undifferentiated spermatogonia and several markers can now
be used to identify SSCs. Comparison of gene expression by
whole-mount double-staining of seminiferous tubules revealed
that the transcription factor Plzf (promyelocytic leukemia zinc-
finger) (208, 209) and the calcium dependent cell-cell adhesion
glycoprotein E-Cadherin (210) have identical expression patterns
and are present in all A spermatogonia (211). In contrast, the cell
surface receptor Gfrα1 and the transcription factor Nng3 showed
a more heterogeneous expression, where As, Apr and Aal can be
stratified into Gfrα1 single-positive, Gfrα1/Ngn3 double positive,
and Ngn3 single-positive. The shorter chains of cells have a
greater probability of being Gfrα1 single-positive while longer
chains tend to be Ngn3 single-positive (211–213). Moreover,
the m-RNA binding protein Nanos C2hc-Type Zinc Finger 2
(Nanos2) promotes the male fate while suppressing meiosis in
embryonic XY germ cells (214). Recently, pigs with heterozygous
and homozygous mutations in Nanos2 were generated using the
CRISPR/Cas9 system. Males pigs had an impaired development
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FIGURE 7 | Schematic representation of factors affecting self-renewal and

differentiation of spermatogonia in mice. Spermatogonia are classified as

Asingle (As), Apaired (Apr), and Aaligned (Aal) according to the number of cells

contained in a syncytium. In steady-state, a subset of Gfrα1/Nanos2

expressing cells function as stem cells with the ability to self-renew their

population. Gfrα1+ spermatogonia have the ability to generate cells that lose

the expression of Gfrα1 and become Ngn3+/Rarγ+/Miwi2+, which can retain

the stem cell potential but mostly become Kit+ cells, and therefore are

committed to terminal differentiation. In regenerative contexts,

Ngn3+/Rarγ+/Miwi2+ can regain Gfrα1 expression contributing to the

self-renewing pool.

of testis, specifically homozygous Nanos2 knockout had no germ
cells in the presence of intact seminiferous tubules (215). Nanos2
was found to be almost exclusively expressed in As to Apr
cells, whereas Nanos3 is detectable in most undifferentiated
spermatogonia (As to Aal) (214). This heterogeneity of gene
expression has suggested functional heterogeneity within the
same cluster of cells (i.e., As, Apr, Aal) (Figure 7).

Lineage tracing, live imaging and pulse labeling studies have
revealed that differentiation of spermatogonia is more complex
that previously described and have led to a revision of the
traditional “As model.” In steady-state, a subset of Gfrα1+ cells
resides on the top of the hierarchy (211) and function as stem cells
with the ability to self-renew their population while maintaining
a constant number of Gfrα1+ spermatogonia (216). Moreover,
Gfrα1+ spermatogonia were shown to continually interchanged
between As, Apr and Aal spermatogonia through a combination
of incomplete division and syncytial fragmentation. At the same
time, all categories of As, Apr, and Aal Gfrα1+ spermatogonia
had the ability to generate cells that lose the expression of
Gfrα1 and become positive for Ngn3. Ngn3+ cells, independently
from the chain length (including As cells), are destined
for differentiation and become Kit+ which undergo several
further rounds of cell division and are committed to terminal
differentiation. Eventually all Kit+ cells are derived from Ngn3+

cells (211, 213). Interestingly, these studies also demonstrated
that Ngn3+ cells retain the capability of regaining GFRα1
expression, fragmenting into single cells or shorter syncytia
(through breaking of intercellular bridges), and contributing to
the long-term stem cell pool. This reversion is rare in homeostasis

but becomes more frequent during regeneration, for example
after tissue insult by a cytotoxic reagent or transplantation (211,
217). Therefore, Ngn3+ spermatogonia have been referred to as
“potential stem cells” (211, 217). In this context, further studies
have identified other subpopulations of undifferentiated cells that
contribute to the self-renewing pool. Carrieri et al. identified a
novel population of Ngn3+ spermatogonia that express the Piwi
protein Miwi2, which was shown by cell ablation to be crucial for
efficient regenerative spermatogenesis after injury (218). More
recent studies have further characterized germline stem cells;
for example, Gfrα1+ cells comprise subpopulations that express
the transcription factor Pancreatic and duodenal homeobox 1
(Pdx1) (219), the Erb-B2 Receptor Tyrosine Kinase 3 (Erbb3)
(220), Inhibitor of differentiation 4 (Id4) (221) and Shisa family
member 6 |(Shisa6) (222).

Spermatogonia reside within specialized microenvironments
- referred as “niches” - in the basal compartment of seminiferous
tubules. A undifferentiated spermatogonia, including Gfrα1+

subpopulation, localize preferentially to the area adjacent to the
vasculature network of arterioles and venules that accompanies
interstitial cells (216, 223, 224). On making the transition
into differentiating spermatogonia, they migrate out of these
areas and disperse over the entire basal compartment of
the seminiferous epithelium (225). Interestingly, live-imaging
revealed that Gfrα1+ cells intersperse between Ngn3+ and Kit+

spermatogonia and are in constant movement in the basal
compartment where they actively migrate between Sertoli cells
(216). Such a microenvironment can be designated as an open
stem cell niche.

Although the molecular mechanisms governing the
maintenance and fate of A undifferentiated spermatogonia
are yet not fully understood, Sertoli cells are widely regarded
as key contributors to the maintenance and differentiation of
SSCs, being the main source of the Glial -derived neurotrophic
factor (Gdnf) (the ligand for GFRα1 receptor complex), and
Fgf2 (226). For example, in vivo overexpression and loss-
of-function models show that the dosage of Gdnf regulates
accumulation/depletion of undifferentiated spermatogonia
(227), and in vitro stimulation with Ggnf leads to proliferation
of GFRα1+ cells (212). Gdnf-mediated proliferation of SSCs
involves regulation of Src family kinases, Yes, Lyn and Fyn.
Gdnf activates Src family kinases, which further stimulate the
phosphoinositide 3-kinase (PI3K)/Akt pathway (228) and up-
regulates N-Myc expression to promote SSCs proliferation (229).
More recently, further studies revealed that Gdnf production
is regulated by the canonical Notch pathway (191, 230) via
the transcriptional repressors Hes1 and Hey (231). Fgf2 was
shown to expand GFRα1+ cells, although these cells had
a distinct phenotype from Ggnf. Fgf2 expanded a retinoic
acid receptor γ (Rarγ) expressing subset of cells showing
Fgf2 function to be more appropriate for spermatogonial
differentiation (226). It is known that retinoic acid (RA), which
is synthesized from Vitamin A, is required for spermatogonial
differentiation (232, 233). The generation of Kit+ spermatogonia
was blocked in the testes of Vitamin A deficient mice and
reinitiated after administration of Vitamin A. Lineage-tracing
analysis revealed that Ngn3+ cells (but not Gfrα1+), which
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specifically express Rarγ, transit to Kit+ cells rapidly and
efficiently in response to RA (234). Fgf2 signaling is dependent
on Map2k1 pathway activation to drive SSC self-renewal via
upregulation of the transcription factor Ets variant 5 (Etv5) and
transcriptional repressor B-cell CLL/lymphoma 6, member B
(Bcl6b) (235). Another study indicated that Fgf2 may regulate
SSCs proliferation in vitro via phosphorylation on Akt and
Erk1/2 pathway (236). Finally, it should be mentioned that
the activation of the Wnt/β-catenin pathway is thought to
drive the transition from Gfrα1+ to Ngn3+ spermatogonia,
and signaling is likely initiated by Wnt6, which is uniquely
expressed by Sertoli cells (222, 237, 238). Evidence for the
importance of Sertoli cells as supporting/regulatory cells also
comes from in vivo knockout experiments, which identified
Sertoli cell specific genes, for example Connexin 43 (cx43),
Swi-independent 3a (Sin3a), cytochrome P450 enzymes
(Cyp26b1), and Ets related molecule (Erm), some of which play
a role in the above pathways, that are essential in supporting
germ cell proliferation and/or survival (239–242) and normal
spermatogenesis (243).

Another factor which is important for the maintenance of
the SSCs pool is oxygen availability. The microenvironment
where SSCs reside can be described as being low in oxygen (or
hypoxic), a condition that induces the activation of transcription
factor hypoxia inducible factor 1α (HIF1α) and can inhibit
cell differentiation (244). Staining of adult testis revealed
the expression of HIF1α in the stem cell niche along the
basement membrane of the seminiferous tubules, while the signal
diminishes as cells differentiate, implying a possible role of Hif 1α
in germ cell development (245).

Another important question is the extent to which the
knowledge acquired using rodents can be applied to humans.
Human spermatogonia are characterized by their nuclear
morphology and staining with haematoxylin as Adark and
Apale spermatogonia (246). Adark spermatogonia are thought
to function as reserve stem cells, whilst Apale spermatogonia
are progenitors of spermatocytes. Nevertheless, their identity,
self-renewal and differentiation abilities are just beginning
to emerge. Prepubertal human spermatogonia showed
expression of genes important in mouse SSCs regulation (247).
Immunohistochemistry on tubule sections revealed human
spermatogonial cells share some (i.e., GFRα1) of the markers
found in rodents (248). More recently, three independent groups
revealed using single-cell RNA-sequencing in human testis clear
evidence for heterogeneity and identified distinct cell clusters
including SSCs (249–251). These findings provide a starting
point for further studies, such as the evaluation of SSC frequency
and assessment of SSC activity (252).

Leydig cells, the testosterone-producing cells of the adult
testis, derive from stem Leydig cells, spindle-shaped cells that
lack steroidogenic cell markers (253). Once formed, Leydig cells
rarely die or divide. Nevertheless, their depletion in conditions
such as ethane dimethanesulfonate is followed by the appearance
of new, fully functional adult Leydig cells (254, 255), which are
thought to arise from precursors stem cells (254). Very recently,
it was shown in male rats that Fgf-homologous factor-1 (Fhf1
or Fgf12), an intracellular protein, is abundant in Leydig cells

and that injection of Fhf1 resulted in Leydig cells regeneration
from precursor stem cells in rats where Leydig cells were
pharmacologically ablated (256).

In contrast, one study reported that complete ablation of
Sertoli cells in vivo, either in fetal life (e16.5) or post-natal life,
did not lead to repopulation of the testis with new Sertoli cells,
indicating Sertoli cells do not possess regenerative capacity and
no stem Sertoli cells are present in adult testis (257).

Stem Cells and Regenerative Medicine in
the Testis
In recent years, the pluripotency characteristics of SSCs has
emerged. For example, the generation of pluripotent embryonic
stem like cells was established from neonatal mice testis
(258). Similarly, in humans SSCs yielded human testis-derived
embryonic stem-like cells (htESLCs) (259, 260); htESLCs
were shown to differentiate in vitro into derivatives of all
three germ layers including neural, epithelial, osteogenic,
myogenic, adipocyte, and pancreatic lineages (261). Therefore,
SSCs are considered a feasible source for applications in
regenerative medicine.

Adverse effect of cancer treatments in men include long-term
infertility. If cancer occurs after puberty sperm cryopreservation
is the simplest and the most effective method to preserve
fertility, nevertheless in prepubertal patients this is not an
option. The self-renewal and differentiation abilities of SSCs
make these cells a promising tool in the treatment of
infertility. To this end, cryopreservation of testicular tissue
before chemo-therapy and later autotransplantation of SSCs
could theoretically be used to restore fertility. In this context
promising results have been obtained in animals. Already in
1994, Brinster and Zimmermann showed that male mice stem
cells injected into seminiferoustubules repopulated sterile testes
and donor recipients produced mature spermatozoa (262).
Human germ cells xenotransplanted to testes of busulfan-
treated mouse (with suppressed spermatogenesis) testes survived
for at least 6 months and proliferated during the first
month after transplantation, however no human-differentiating
spermatogonia were identified (263). Similarly, spermatogonia
in the testis of a prepubertal boy were shown to migrate to
the basement membrane of the mouse recipient seminiferous
tubule and were maintained as germ cells (247). Human
testicular cells from adult men were isolated, maintained and
proliferated in vitro for longer than 20 weeks. In 4 out of 6
men, even after prolonged in vitro culture, xenotransplantation
to mice demonstrated the presence of functional SCCs (264).
Importantly, testicular cells from a 6.5- and 8-year-old boys
were cultured in vitro for at least 15.5 weeks (265). Elhija
et al. established a 3D agar culture system which was
able to induce germ testicular cells from mice to generate
morphologically normal spermatozoa (266). Sato et al. reported
the use of an in vitro organ culture method that supported
complete mouse spermatogenesis (267, 268); subsequently
this methodology was used to generate viable sperm, which
through micro-insemination resulted in healthy offspring (269).
Although it might take a while before the first clinical trial
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of SSCs autotransplantation is granted, these pre-clinical data
are promising.

OVARY

Key Pathways Guiding Ovary Development
In females, PGCs divide by mitosis with incomplete cytokinesis
until around e13.5 in mice and 11–12 weeks in humans
producing germ cell cysts (also called germ cell nests) (Figure 8)
(270). Mitotic division ends and germ cells enter meiosis-
I and arrest in the diplotene stage of prophase-I eventually
becoming oocytes (271). Germ cell cysts start undergoing
breakdown (starting at around e18 until post-natal day 5) to
produce primordial follicles (primordial follicle pool) consisting
of a single oocyte surrounded by pre-granulosa cells (272–
274). At this time, the ovary is reorganized into morphological
compartments, the cortex (containing primordial follicles) and
the medulla. During a process called folliculogenesis primordial
follicles further develop to become potential fertilizable eggs
at sexual maturity. During a first phase (the preantral phase),
primordial follicles mature into primary and secondary follicles.
In a second phase (the antral or gonadotropin-dependent
phase) granulosa cells secrete follicular fluid generating fluid-
filled antral follicles. After the onset of puberty, activation and
further maturation of follicles lead to oocytes ovulation. Just
before ovulation, oocytes complete the first meiotic division
and begin the second meiotic division which is completed only
after fertilization.

Factors that determine ovarian specification include members
of the Wnt/β-catenin pathway. Expression of Wnt4 is firstly
detected from e10 onwards. When sex specific differentiation
begins, Wnt4 is downregulated in males and continues to
be expressed in females. Ovaries of Wnt4−/− appeared
masculinized (absence of Müllerian duct and development of
Wolffian duct) indicating that Wnt4 is a determinant of the
female gonad (275). A mutation in the human R-spondin1
(RSPO1) gene, was shown to be responsible for female-to-male
sex reversal. Moreover, the same study reported that Rspo1 is
expressed specifically in XX gonads of mice during the critical
stage (e13–15) of gonad differentiation (276). Female Rspo1−/−

mice showed male phenotypic features similar to what observed
in Wnt4−/− mice (277). Another factor involved in ovarian
determination is the transcription factor Foxl2, which is detected
in female mice as early as e12.5. Foxl2−/− female mice revealed
Foxl2 is required for ovarian follicle formation (278, 279).
Moreover, Wnt4−/−Foxl2−/− double knockout ovaries resulted
in the formation of testis tubules and harbored well-differentiated
spermatogonia (280).

Stem Cells and Self-Renewal in Ovary
For many years, the mammalian ovary was thought to contain
at birth a fixed non-renewing pool of oocyte-containing follicles,
that are depleted to exhaustion with aging (281). However, in
2004, Johnson et al. (282) challenged this notion. The group
counted the number of atretic (degenerating follicles) and non-
atretic (healthy) follicles in ovaries of mice. Based on the
number of degenerating follicles at any given time under normal

conditions they predicted complete exhaustion of the follicle
reserve by young adulthood. Nevertheless, the number of non-
atretic follicles declined less than expected. Thus, they speculated
that germ line stem cells are present in the post-natal ovary
of mice. Not surprisingly, this study ignited a debate on the
possibility of post-natal neo-oogenesis in mammals (283, 284),
and prompted follow-up investigations. Convincing evidence of
the presence of female germline stem cells (FGSCs) [also known
as oogonial stem cells (OSCs) (285)] in the mammalian ovary was
provided for the first time in 2009 by Zou et al. Firstly, putative
FGSCs were identified in neonatal and adult mice ovaries by dual
immunofluorescence analysis of BrdU incorporation and mouse
vasa homolog (Mvh, a germ-cell marker). Subsequently, FGSCs
were isolated from neonatal (nFGSCs) and adult (aFGSCs) mice
ovaries by two-step enzymatic digestion and immunomagnetic
isolation of Mvh-positive cells. These cells were maintained in
culture for months and expressed markers of germline cells
and proliferation. Furthermore, when GFP labeled aFGSCs were
transplanted into ovaries of infertile mice (sterilized by pre-
treatment with cyclophosphamide and busulfan), histological
evaluation after 2 months showed that ovaries had many
oocytes at all stages of development, including GFP-positive
oocytes, suggesting that oocytes can be regenerated in sterile
recipient females by transplantation of FGSCs. Ultimately,
the transplanted mice produced offsprings that had the GFP
transgene (286). Following this study, within a short period
of time, similar data were generated. A wealth of literature
reported the isolation of mitotically active germ cells from
adult animals mainly using magnetic-assisted cell sorting or
FACS and subsequent culture of the isolated cells (287–295)
[also reviewed by (285)]. Importantly, by the use of FGSCs
intragonadal transplantation-base approaches, these studies also
confirmed the functional capacity of mouse FGSCs to restore
ovarian function and produce offsprings (287, 294, 296).

For a few years, possibly partly due to the lack of appropriate
methodology (297), the question of whether FGSCs actually
contribute to oocytes during de novo folliculogenesis in female
adult mice under physiological conditions remained unresolved
(298–300). Finally, compelling evidence was provided by the use
of a tamoxifen-inducible system that traced Oct4- expressing
cells permanently marked with enhanced yellow fluorescent
protein (EYFP) in post-natal mouse ovaries. This line of evidence
proved the existence of active ovarian germ stem cells in vivo
and their function in replenishing the primordial follicle pool
under physiological conditions (301). Soon after, this result
was confirmed by inducible ablation of premeiotic germ cells
undergoing differentiation into oocytes driven by the promoter
of Stimulated by Retinoic Acid gene 8 (Stra8). With this
approach, the study demonstarted that new oocytes are formed
in ovaries during adult life and that some of these oocytes
contribute directly to the pool of oocytes used for natural
reproduction (302).

Aside from the numerous animal studies that have populated
the literature since the traditional view of a finite pool of oocytes
was challenged (282), human investigations have also emerged. A
significant progress in the field was made when viable Mvh+ cells
were isolated from human ovarian cortical tissue and maintained
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FIGURE 8 | Schematic representation of ovary development. Primordial germ cells (PGCs) colonize the gonadal primordium and undergo mitotic division with

incomplete cytokinesis producing cysts. Subsequently, germ cell cysts undergo breakdown to produce primordial follicles, consisting of a single oocyte surrounded by

pre-granulosa cells. During sexual maturation, primordial follicles develop further eventually becoming potential fertilizable eggs at sexual maturity.

in vitrowhere they spontaneously generated oocytes as confirmed
via morphological and gene expression analyses and attainment
of haploid status. Mvh+ cells isolated from adult human
ovaries were stably transduced with a GFP expression vector,
injected in adult human ovarian cortical tissue biopsies and
then xenografted into female mice where formation of follicles
containing GFP-positive oocytes was observed (303). Similar
results were independently obtained by other groups (304–307).

With multiple laboratories now confirming the existence and
functional characteristics of FGSCs, new studies have recently
emerged in the attempt to investigate their biological activities
and regulatory mechanisms (i.e., self-renewal, differentiation,
apoptosis). Zhang et al. reported that Cadherin 22 (Cdh22), a
member of cadherin family, is required for FGSCs self-renewal
via different mechanisms, including interacting with the Jak–
Stat and β-catenin signaling pathways (308). In a follow-up
study, the same group showed that Cdh22 interacts with Pik3
to phosphorylate Akt3, which enhanced the expression levels
of N-Myc and members of the cyclin family to promote self-
renewal. Moreover, Gdnf was also shown to be essential for FGSC
self-renewal via a more complicated mechanism: Gdnf-Gfrα1
activates Akt3 via PI3K or Src family kinase (Sfk), and Sfk
upregulates its target genes, Bcl6b, Etv5, and Lhx1. Nevertheless,
Src, the key intermediate factor for SSCs, was not the
functional molecule of Sfk family in the Gdnf signal network of
FGSCs (309).

The origin of FGSCs has been debated for years. Soon
after their first pubblication, Johnson et al. suggested bone
marrow as a potential source of female germ cells (310).
However, a later study showed, by the use of transplantation
and parabiotic mouse models, no evidence that bone marrow

cells, or any other normally circulating cells, contribute to
the formation of mature ovulated oocytes both in the steady
state and after induced ovarian damage (311). A follow-up
investigation by Lee at al. reported conflicting conclusions.
Transgenic mice with germline-specific expression of GFP
underwent bone marrow transplantation (BMT) after injection
with busulfan and cyclophosphamide. BMT rescued fertility,
but all offspring derived from the recipient germline (312).
More recently, positive results came from injection of human
bone marrow–derived stem cells (BMDSC) into mice with
chemotherapy-induced ovarian damage. BMDSC treatment
resulted in production of higher numbers of preovuolatory
follicles, metaphase II oocytes, 2-cell embryos, and healthy
pups (313).

While much research of stem cells in ovary has focused on
FGSCs, indication of normal somatic stem cells has also been
provided. The work by Honda et al. showed evidence in newborn
mice ovaries of putative thecal stem cells with the ability to
self-renew and differentiate in vivo and in vitro. These putative
thecal stem cells formed characteristic anchor-independent
round colonies, and, after stimulation, started to differentiate
and show characteristic signs of steroidogenesis. Moreover, after
transplantation into ovaries these putative thecal stem cells
showed aggregation immediately adjacent to developing follicles
and in both theca interna and externa during folliculogenesis
(314). Using BrdU incorporation and doxycycline inducible
histone2B-green fluorescent protein pulse–chase techniques,
Szotek et al. identified a putative somatic stem/progenitor cell
in the ovarian surface epithelium (OSE) in the adult mouse
ovary. Interestingly, Virant-Klun et al. isolated and characterized
putative ovarian stem cells obtained from the OSE of the adult
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human ovary in women with no naturally present oocytes and
follicles. Small round cells (2–4µm) with a bubble-like structure
that expressed early embryonic developmental markers were
separated and cultured in vitro where they proliferated, with
some cells reaching a diameter of ∼20µm after 5–7 days (315,
316). Since their discovery, somatic stem cells in the ovary have
been of particular interest as these cells may be responsible
for ovarian cancer during adult life as well as neo-oogenesis
[reviewed by (317)].

Stem Cells and Regenerative Medicine in
the Ovary
The finding of FGSCs in adult human ovaries promts the
question whether these cells can be utilized somehow to
enhance, prolong or restore fertility in women. Although this
might seems a far-fetched scenario, reproductive biologists are
already working toward this goal. One possiblity is a procedure
known as “Autologous germile mitochondrial energy transfer
(AUGMENT),” which involves the use of patient matched FGSCs
mitochondria to invigorate oocytes of women with a history of
poor egg and embryo quality (318). Another option is based
on autologous oocytes transplantation approaches to prolong or
restore ovarian function. This would include the development
of techniques designed to reconstitute human ovarian tissue
which would allow the production of functional eggs from FGSCs
entirely ex vivo (285). While there is a long way ahead, these
techniques would offer women faced with fertility challenges a
unique opportunity for bearing a genetically-matched child.

ENDOCRINE PANCREAS

Endocrine Function in the Pancreas
The pancreas contains both an exocrine and endocrine
component, with the endocrine system accounting for ∼5–15%
of the total pancreas. The exocrine pancreas is composed of
acinar cells that secrete digestive enzymes into the pancreatic
duct and assist with digestion. The five main cell types of the
endocrine pancreas are located within clusters of cells known as
the islet of Langerhans, which include: glucagon-producing α-
cells, insulin-producing β cells, somatostatin-producing δ cells,
ghrelin-producing ε cells and polypeptide-producing PP cells.
The α, β, δ, and PP cells play critical roles in maintaining
physiologic blood glucose levels, while ε cells play a role during
fetal development, but they are virtually absent in the adult
pancreas. During periods of elevated blood glucose, which occurs
after food ingestion, β cells release insulin which signals to
the liver, adipose tissue and skeletal muscle to increase glucose
uptake. Conversely, during periods of low blood glucose, α

cells secrete glucagon, triggering hepatic glycogen breakdown
and glucose secretion into circulation. Somatostatin is known
to inhibit both insulin and glucagon secretion, and PP inhibits
glucagon release in low-glucose conditions. Together, through
the concerted release of these hormones, blood glucose levels are
able to remain within a physiologic range (319).

Key Pathways Guiding Pancreas
Development
During embryonic development, the pancreas emerges from
the endoderm, a primordial germ cell layer that gives rise to
the digestive and respiratory tracts and their derivative organs.
Pancreas development begins around e9.5 in the mouse, at
which time the dorsal bud emerges from the Pdx1-expressing
region of the posterior foregut, followed by the ventral bud
at e10.0 (320–322). Following a 180-degree rotation around
the duodenum, the dorsal and ventral buds fuse to form a
single pancreatic anlage. The pancreatic epithelium begins to
protrude and undergoes extensive remodeling and formation
of a web-like structure, or plexus (320). During this time, the
surrounding mesenchyme secretes factors such as Fgf10 and Egf,
which are critical for pancreas differentiation and proliferation
(320, 323, 324). During plexus remodeling, signaling from the
surrounding mesenchyme and polarization of epithelial cells lead
to the formation of regions with distinct developmental potential:
the tip contains the multipotential pancreatic cells (MPCs)
and the trunk contains bi-potent endocrine/ductal progenitors
(Figure 9). The multipotent progenitors express Pdx1, Pancreas
Associated Transcription Factor 1a (Ptf1a), NK6 Homeobox
1(Nkx6-1), Carboxypeptidase A1 (Cpa), Myc, and Sox9 and
provide a source of cells that can become endocrine, ductal
and acinar cells (325–332). Cells of the trunk that undergo
endocrine and ductal commitment continue to express Nkx6-
1, a transcription factor required for β cell development, but
lose expression of Ptf1a, a transcription factor that becomes
restricted to acinar cells (333, 334). As cells commit to the
endocrine lineage, the pancreatic epithelium and mesenchyme
get connected to the vasculature and become less hypoxic, HIF1a
(a marker of hypoxia) expression decreases and cells of the
epithelium upregulate Ngn3, a basic loop helix transcription
factor marking all endocrine progenitors (335–337). In order for
cells to undergo endocrine differentiation and upregulate Ngn3
expression, Notch signaling must be downregulated (338, 339).
In addition to Notch inhibition, recent work by a number of
groups have demonstrated that inhibition of Wnt, Tgfβ and
Hippo (through the downregulation of its effector Yes Associated
Protein, Yap) signaling further enhances human endocrine
differentiation (Figure 9) (340–342). The mechanism by which
endocrine cells form the islet of Langerhans had been thought
to occur as a result of delamination of individual endocrine
cells, followed by their subsequent coalescence. This paradigm
has recently been challenged by Sharon et al., who proposed
that islets form from peninsula-like structures (340, 343–345).
In this model, Sharon et al. demonstrated that endocrine cells
maintain cellular contact during islet formation: α cells are
believed to initially emerge from the trunk region to form
the peripheral cells of the islet, followed by the emergence of
β cells, which maintain contact with the α cells, in order to
form the islet core. At least in the mouse, the final size of the
organ is dictated by the number of progenitors that arise during
embryonic development and contrary to other organs, such as
the liver, the pancreas has very limited proliferative potential in
adults (346).
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FIGURE 9 | Schematic representation of murine pancreatic development. Multipotential Pancreatic Cells (MPC) (pink) and acinar cells (purple) are located at the tip of

the pancreatic epithelium. The trunk contains endocrine/ductal bipotent progenitors (light blue) that migrate out of the epithelium and differentiate to endocrine

progenitor cells (orange) which give rise to hormone positive cells (green cells). Endocrine commitment is driven by inhibition of Notch, Wnt, Tgf-β, Hippo, and Bmp

signaling pathways.

β Cell Regeneration in the Pancreas
The proliferative capacity of the endocrine pancreas gradually
decreases after birth, with β cells showing minimal evidence
of proliferation and turnover (347). However, β cell mass
increases during pregnancy, suggesting that an increase in β cell
mass can occur under physiological conditions (348). Therefore,
understanding the mechanisms guiding β cell regeneration has
been of particular interest as this knowledge could potentially
be leveraged to intentionally increase β cell mass as a treatment
for diabetes.

The main mouse models used to study pancreatic
regeneration, which have been eloquently reviewed (349),
include: pancreatic duct ligation, partial pancreatectomy
(removal of 50–75% of the pancreas), chemical induced
pancreatitis, and β cell ablation models caused by drug
administration, such as alloxan or streptozotocin (349).
Partial pancreatectomy (Ppx) has historically been the most
common model to study regeneration as it leads to both
acinar and islet cell regrowth, making it an interesting model
for β cell regeneration (350, 351). Although ductal cells
have been identified in some Ppx models to be the source
of acinar and β cell regeneration, lineage tracing studies
suggest that pancreatic regeneration occurs through self-
renewal, where acinar cells generate new acinar cells and β

cells generate new β cells (352–355). Using an insulin lineage
tracing mouse model to label terminally differentiated β

cells, in combination with a Ppx mouse model, Dor et al.
identified that the main source of β cell generation is
through self-renewal (352). Supporting this idea, using a
DNA analog-based lineage tracing method in order to detect

each round of cell division, Teta et al. demonstrated that
β cells come from pre-existing β cells and not a source of
stem/progenitor cells in the adult pancreas (356). Recent
publications have shown that β cell heterogeneity exist within
the islet, with some β cells having been identified as being
more proliferative and immature than other β cells. The
heterogeneity that exists could explain the ability of some β cells
to be capable of self-renewal, while the less proliferative β cells
cannot (357–359).

If, however, β cell regeneration occurs through the
proliferation of existing β cells, self-renewal would not explain β

cell regeneration in mouse models of type 1 diabetes where near-
complete β cell ablation occurs. Interestingly, in a mouse model
containing a transgene for an insulin promoter and diphtheria
toxin (DT) receptor sequence that can result in up to >99%
ablation of β cells following DT treatment, β cell regeneration
was shown to occur as early as 15 days post-DT treatment. In
this model, using lineage tracing to label glucagon-producing α

cells prior to DT-treatment (360), β cell regeneration from α cells
was demonstrated. The ability of α cells to transdifferentiate to
β cells introduces the idea that endocrine cells retain plasticity,
which has been the basis for efforts to identify compounds that
could modulate α to β transdifferentiation, but so far with no
success (361–363).

Additionally, other studies suggest that insulin expressing cells
are in fact the stem cells of the pancreas, being able to generate
other exocrine and endocrine tissues (364). More recent work
identified pancreatic cells within an islet-depleted cell population,
such as ductal tissue, that can generate insulin-expressing cells
following transplantation in mice, suggesting a non-endocrine
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progenitor-like population exists that can also generate insulin
producing cells (365).

Overall these studies indicate that the type of stress caused by
pancreatic injury and/or the resulting environment may dictate
the source of β cell regeneration, thereby adding to the difficulty
in deciphering the mechanisms of β cell regeneration in a natural
and physiological manner in humans.

Stem Cells and Regenerative Medicine in
Pancreas
In addition to generating β cells through regeneration, using
cadaveric donors or human pluripotent-stem cells (hPSCs)
offers another source of β cells for therapy. Human cadaveric
islets and whole pancreas transplantation have been performed
for patients with type 1 diabetes and have demonstrated
the ability to normalize glycemia. However, the requirement
for numerous donors for each patient, potential requirement
for a subsequent transplant, and lack of donors have made
hPSC-derived β cells a more compelling source of cells for
the treatment of diabetes. The most efficient differentiation
protocols to date attempt to recapitulate key stages of pancreas
development in vitro, including: (1) definitive endoderm
formation, (2) posterior foregut patterning, (3) Pdx1 induction,
(4) pancreatic progenitor generation (Pdx1+/Nkx6-1+ cells),
(5–6) endocrine commitment (Ngn3+ cells), and (7) β-like
cells differentiation (Nkx6-1+Cpep+ cells) (340, 341, 366–370).
Pancreatic progenitors offer an appealing source of cells for
transplantation as they give rise to all cells of the pancreas
following transplantation in mice and can normalize glycemia
in an streptozotocin-induced diabetic mouse model of diabetes
(367, 368, 371). Supporting the use of hESC for the treatment
of diabetes, ViaCyteTM has launched several clinical trials to test
the safety of pancreatic progenitor transplantation in humans
(NCT02239354, NCT02939118, NCT03162926, NCT03163511).
Outcomes of these initial clinical trials will provide knowledge
that will be the basis of future hPSC-derived pancreatic
transplantations. Although PPs have demonstrated the ability
to normalize glycemia in mice, generating β cells in vitro
from hPSC may allow for a more efficient means to normalize
glycemia and contain a more committed endocrine population

that would not give rise to other cells of the pancreas, such
as acinar cells. Therefore, generating hPSC-derived β cells
in vitro could provide a cell product that would be more
efficient for diabetes therapy. In 2014, two groups identified
protocols to generate Nkx6-1+/serum-C-peptide (Cpep)+ cells
from hPSC in vitro, and although the hPSC-derived β-like
cells could release insulin in response to a glucose challenge,
further maturation only occurred following transplantation in
mice (372, 373). More recent publications have claimed the
generation of more functional β cells from hPSC in vitro.
However, efficiencies of these published protocols remain poor,
with some protocols requiring fluorescence-activated cell sorting
using a transgenic INS:GFP reporter cell line, and protocol
reproducibility has yet to be confirmed (341, 342, 370). Although
signaling pathways guiding human β cell differentiation have
been identified in these reports and have helped push the field
forward, generating a population of cells that is therapeutically
relevant will require extensive improvements in the efficiency,
purity, reproducibility, and functionality of hPSC-derived β-like
cell directed differentiation protocols.
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