941 research outputs found
Two-Boson Exchange Physics: A Brief Review
Current status of the two-boson exchange contributions to elastic
electron-proton scattering, both for parity conserving and parity-violating, is
briefly reviewed. How the discrepancy in the extraction of elastic nucleon form
factors between unpolarized Rosenbluth and polarization transfer experiments
can be understood, in large part, by the two-photon exchange corrections is
discussed. We also illustrate how the measurement of the ratio between
positron-proton and electron-proton scattering can be used to differentiate
different models of two-photon exchange. For the parity-violating
electron-proton scattering, the interest is on how the two-boson exchange
(TBE), \gamma Z-exchange in particular, could affect the extraction of the
long-sought strangeness form factors. Various calculations all indicate that
the magnitudes of effect of TBE on the extraction of strangeness form factors
is small, though can be large percentage-wise in certain kinematics.Comment: 6 pages, 5 figures, prepared for Proceedings of the fifth
Asia-Pacific Conference on Few-Body Problems in Physics (APFB2011), Seoul,
Korea, August 22-26, 2011, to appear in Few-Body Systems, November 201
DNA hybridization catalysts and catalyst circuits
Practically all of life's molecular processes, from chemical synthesis to replication, involve enzymes that carry out their functions through the catalysis of metastable fuels into waste products. Catalytic control of reaction rates will prove to be as useful and ubiquitous in
DNA nanotechnology as it is in biology. Here we present experimental results on the control of the decay rates of a metastable DNA "fuel". We show that the fuel complex can be induced to decay with a rate about 1600 times faster than it would decay spontaneously. The original DNA hybridization catalyst [15] achieved a maximal speed-up of roughly 30. The fuel complex discussed here can therefore serve as the basic ingredient for an improved DNA hybridization catalyst. As an example application for DNA hybridization catalysts, we propose a method for implementing arbitrary digital logic circuits
Finite temperature phase diagram of spin-1/2 bosons in two-dimensional optical lattice
We study a two-species bosonic Hubbard model on a two-dimensional square
lattice by means of quantum Monte Carlo simulations and focus on finite
temperature effects. We show in two different cases, ferro- and
antiferromagnetic spin-spin interactions, that the phase diagram is composed of
solid Mott phases, liquid phases and superfluid phases. In the
antiferromagnetic case, the superfluid (SF) is polarized while the Mott
insulator (MI) and normal Bose liquid (NBL) phases are not. On the other hand,
in the ferromagnetic case, none of the phases is polarized. The
superfluid-liquid transition is of the Berezinsky-Kosterlitz-Thouless type
whereas the solid-liquid passage is a crossover.Comment: 9 pages, 13 figure
A jump-growth model for predator-prey dynamics: derivation and application to marine ecosystems
This paper investigates the dynamics of biomass in a marine ecosystem. A
stochastic process is defined in which organisms undergo jumps in body size as
they catch and eat smaller organisms. Using a systematic expansion of the
master equation, we derive a deterministic equation for the macroscopic
dynamics, which we call the deterministic jump-growth equation, and a linear
Fokker-Planck equation for the stochastic fluctuations. The McKendrick--von
Foerster equation, used in previous studies, is shown to be a first-order
approximation, appropriate in equilibrium systems where predators are much
larger than their prey. The model has a power-law steady state consistent with
the approximate constancy of mass density in logarithmic intervals of body mass
often observed in marine ecosystems. The behaviours of the stochastic process,
the deterministic jump-growth equation and the McKendrick--von Foerster
equation are compared using numerical methods. The numerical analysis shows two
classes of attractors: steady states and travelling waves.Comment: 27 pages, 4 figures. Final version as published. Only minor change
Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron
The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2]
for the proton and neutron have been determined from measurements of polarised
cross section asymmetries in deep inelastic scattering of 27.5 GeV
longitudinally polarised positrons from polarised 1H and 3He internal gas
targets. The data were collected in the region above the nucleon resonances in
the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the
proton the contribution to the generalised Gerasimov-Drell-Hearn integral was
found to be substantial and must be included for an accurate determination of
the full integral. Furthermore the data are consistent with a QCD
next-to-leading order fit based on previous deep inelastic scattering data.
Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
Coherent matter wave inertial sensors for precision measurements in space
We analyze the advantages of using ultra-cold coherent sources of atoms for
matter-wave interferometry in space. We present a proof-of-principle experiment
that is based on an analysis of the results previously published in [Richard et
al., Phys. Rev. Lett., 91, 010405 (2003)] from which we extract the ratio h/m
for 87Rb. This measurement shows that a limitation in accuracy arises due to
atomic interactions within the Bose-Einstein condensate
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction
Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H,
3He, and 14N targets has been studied by the HERMES experiment at squared
four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20
GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the
nuclear transparency, was found to decrease with increasing coherence length of
quark-antiquark fluctuations of the virtual photon. The data provide clear
evidence of the interaction of the quark- antiquark fluctuations with the
nuclear medium.Comment: RevTeX, 5 pages, 3 figure
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …
