14 research outputs found

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the double-differential cross section for the Drell-Yan Z/γ∗ → ℓ+ℓ− and photon-induced γγ → ℓ+ℓ− processes where ℓ is an electron or muon. The measurement is performed for invariant masses of the lepton pairs, mℓℓ, between 116 GeV and 1500 GeV using a sample of 20.3 fb−1 of pp collisions data at centre-of-mass energy of √s = 8 TeV collected by the ATLAS detector at the LHC in 2012. The data are presented double differentially in invariant mass and absolute dilepton rapidity as well as in invariant mass and absolute pseudorapidity separation of the lepton pair. The single-differential cross section as a function of mℓℓ is also reported. The electron and muon channel measurements are combined and a total experimental precision of better than 1% is achieved at low mℓℓ. A comparison to next-to-next-to-leading order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading order electroweak effects indicates the potential of the data to constrain parton distribution functions. In particular, a large impact of the data on the photon PDF is demonstrated

    Introduction or reintroduction? Last resorts for the latest bird to become extinct in Europe, the Andalusian hemipode Turnix sylvatica sylvatica

    No full text
    The Andalusian hemipode (Turnix sylvatica sylvatica) (Order: Turniciformes, Family: Turnicidae), formerly distributed in several Mediterranean countries, is a critically endangered bird, if not already extinct. Subspecies of the T. sylvatica complex, in turn composed by nine subspecies are widely distributed in Africa and southern Asia. The last free-ranging Andalusian hemipodes were shot by hunters near Donana National Park (Spain) in 1981. Therefore, this species could be the last bird species getting extinct in Iberia and Europe in the XXth century. This investigation deals with the phylogenetic relationships of the Andalusian hemipode with the sup- posedly congeneric T. varia, T. tanki, T. suscitator and T. pyrrhothorax, and with the supposedly conspecific T. sylvatica lepurana, which is the geographically nearest buttonquail population (occurring in central and southern Africa). A 606 bp long fragment of the cytochrome b gene (approx. 1140 bp) of the mitochondrial DNA was sequenced, using both museum skins (the only available source for T. s. sylvatica) or blood/tissue samples from contemporary individuals (remaining species and subspecies). Seven haplotypes were found: two each for T. varia and T. s. lepurana, and one each for T. tanki, T. suscitator, T. pyrrhothorax, and T. s. sylvatica. Sequence divergence values obtained from pairwise distances between the T. sylvatica group haplotypes and the other species, ranged from 19.4 to 25.9%. The low genetic divergence between T. s. sylvatica and T. s. lepurana (0.00–0.01%) confirmed that the current classification based on morphological characters is correct, and that these two taxa may should be considered as subspecies. This close relationship would permit an introduction T. sylvatica where the species was last seen in Spain (i.e., Donana National Park). This area is now strictly protected and human persecution is no longer a problem.Peer reviewe

    The Macrocirculation and Microcirculation of Hypertension.

    No full text
    Changes in vascular structure that accompany hypertension may contribute to hypertensive end-organ damage. Both the macrovascular and microvascular levels should be considered, as interactions between them are believed to be critically important. Regarding the macrocirculation, the article first reviews basic concepts of vascular biomechanics, such as arterial compliance, arterial distensibility, and stress-strain relationships of arterial wall material, and then reviews how hypertension affects the properties of conduit arteries, particularly examining evidence that it accelerates the progressive stiffening that normally occurs with advancing age. High arterial stiffness may increase central systolic and pulse pressure by two different mechanisms: 1) Abnormally high pulse wave velocity may cause pressure waves reflected in the periphery to reach the central aorta in systole, thus augmenting systolic pressure; 2) In the elderly, the interaction of the forward pressure wave with high arterial stiffness is mostly responsible for abnormally high pulse pressure. At the microvascular level, hypertensive disease is characterized by inward eutrophic or hypertrophic arteriolar remodeling and capillary rarefaction. These abnormalities may depend in part on the abnormal transmission of highly pulsatile blood pressure into microvascular networks, especially in highly perfused organs with low vascular resistance, such as the kidney, heart, and brain, where it contributes to hypertensive end-organ damage

    Friendship and organization: Learning from the western friendship tradition

    No full text
    This article describes and explores some key concepts from the classical, Western friendship tradition in order to see whether anything may be learned from them about the processes of organizing today. First, it looks at the difference between the modern notion of friendship, which emphasizes intimacy as the basis for an interpersonal relationship, and the classical tradition, which held a much more differentiated view, extending from the interpersonal to the political and systemic. In particular, the idea of friendship as a hexis is described – that is, as a state of mind or disposition towards others rather than just an intimate relationship. Second, it looks at the idea of ‘levels’ of friendship – from those based on utility or pleasure to those rooted in a striving after virtue – which opens up possibilities for analysing the culture of human relationships in organizations. Finally, it examines ways in which these ideas might be applied in organizations through the elaboration of the practices of friendship in the context of levels of friendship and of the idea of friendship as a state of mind. © 2007 Taylor and Francis Group, LLC
    corecore