9 research outputs found

    Global update on the susceptibility of humam influenza viruses to neuraminidase inhibitors 2012-2013

    Get PDF
    Emergence of influenza viruses with reduced susceptibility to neuraminidase inhibitors (NAIs) is sporadic, often follows exposure to NAIs, but occasionally occurs in the absence of NAI pressure. The emergence and global spread in 2007/2008 of A(H1N1) influenza viruses showing clinical resistance to oseltamivir due to neuraminidase (NA) H275Y substitution, in the absence of drug pressure, warrants continued vigilance and monitoring for similar viruses. Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) tested 11,387 viruses collected by WHO-recognized National Influenza Centres (NIC) between May 2012 and May 2013 to determine 50% inhibitory concentration (IC50) data for oseltamivir, zanamivir, peramivir and laninamivir. The data were evaluated using normalized IC50 fold-changes rather than raw IC50 data. Nearly 90% of the 11,387 viruses were from three WHO regions: Western Pacific, the Americas and Europe. Only 0.2% (n=27) showed highly reduced inhibition (HRI) against at least one of the four NAIs, usually oseltamivir, while 0.3% (n=39) showed reduced inhibition (RI). NA sequence data, available from the WHO CCs and from sequence databases (n=3661), were screened for amino acid substitutions associated with reduced NAI susceptibility. Those showing HRI were A(H1N1)pdm09 with NA H275Y (n=18), A(H3N2) with NA E119V (n=3) or NA R292K (n=1) and B/Victoria-lineage with NA H273Y (n=2); amino acid position numbering is A subtype and B type specific. Overall, approximately 99% of circulating viruses tested during the 2012-2013 period were sensitive to all four NAIs. Consequently, these drugs remain an appropriate choice for the treatment and prophylaxis of influenza virus infections

    The potential risks and impact of the start of the 2015–2016 influenza season in the WHO European Region: a rapid risk assessment

    Get PDF
    Background: Countries in the World Health Organization (WHO) European Region are reporting more severe influenza activity in the 2015–2016 season compared to previous seasons. Objectives: To conduct a rapid risk assessment to provide interim information on the severity of the current influenza season. Methods: Using the WHO manual for rapid risk assessment of acute public health events and surveillance data available from Flu News Europe, an assessment of the current influenza season from 28 September 2015 (week 40/2015) up to 31 January 2016 (week 04/2016) was made compared with the four previous seasons. Results: The current influenza season started around week 51/2015 with higher influenza activity reported in Eastern Europe compared to Western Europe. There is a strong predominance of influenza A(H1N1)pdm09 compared to previous seasons, but the virus is antigenically similar to the strain included in the seasonal influenza vaccine. Compared to the 2014/2015 season, there was a rapid increase in the number of severe cases in Eastern European countries with the majority of such cases occurring among adults aged < 65 years. Conclusions: The current influenza season is characterized by an early start in Eastern European countries, with indications of a more severe season. Currently circulating influenza A(H1N1)pdm09 viruses are antigenically similar to those included in the seasonal influenza vaccine, and the vaccine is expected to be effective. Authorities should provide information to the public and health providers about the current influenza season, recommendations for the treatment of severe disease and effective public health measures to prevent influenza transmission

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Epidemiological Features of Pandemic Influenza in Kyrgyzstan due to Influenza A(H1N1)pdm

    Get PDF
    Relevance. Virological laboratory of the Department of prevention of diseases and Sanitary Inspection Healthcare Ministry f of the Kyrgyz Republic is nominated as the National Centre for Influenza Surveillance and accreditated by WHO, and in 2009 is included into a global network of influenza Goal. The purpose of this study - Assessment of epidemic features of manifestations of pandemic influenza A (H1N1) pdm09 in 2009 on the territory of the Kyrgyz Republic, as a comparative study of the molecular and genetic characteristics of influenza A virus (H1N1) pdm09, circulating on the territory of the Republic and the influenza virus reference strains recommended WHO for inclusion in the vaccine for the northern hemisphere. Materials and methods. On the basis of long-term retrospective analysis of the incidence of influenza and severe acute respiratory infections (SARI), and sentinel epidemiological surveillance (SS) data studied pandemic especially in Kyrgyzstan due to influenza A(H1N1)pdm09. Comparative molecular genetic characteristics of influenza viruses A(H1N1)pdm09 allocated in Kyrgyzstan, with reference strains recommended by the World Health Organization (WHO) for inclusion in the vaccine. Results. Overall, the analysis of the results of laboratory tests carried out as part of the routine and sentinel surveillance showed that from January 2009 to March 2010 at 38.8% of those surveyed from among, influenza viruses (at 655 out of 1687) were found. From January to April 2009 in the main circulating influenza A virus (H3N2), which accounted for 55.9 - 77.9% of the number of positive findings. Seasonal influenza A virus (H1N1) was detected in January - February (35.3 and 13.4%, respectively). The share of the flu virus in January accounted for 8%, in March-April - 25%. Not typeable influenza A virus was detected in February in 8.7% of cases. Conclusions. The results of the molecular genetic and virological studies have shown that the influenza pandemic in 2009 in the Republic was due to the spread of pandemic influenza virus A (H1N1) pdm09

    Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018-2020.

    No full text
    Global analysis of the susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAIs) and the polymerase acidic (PA) inhibitor (PAI) baloxavir was conducted by five World Health Organization Collaborating Centres for Reference and Research on Influenza during two periods (May 2018–May 2019 and May 2019–May 2020). Combined phenotypic and NA sequence-based analysis revealed that the global frequency of viruses displaying reduced or highly reduced inhibition (RI or HRI) or potential to show RI/HRI by NAIs remained low, 0.5% (165/35045) and 0.6% (159/26010) for the 2018–2019 and 2019–2020 periods, respectively. The most common amino acid substitution was NA-H275Y (N1 numbering) conferring HRI by oseltamivir and peramivir in A(H1N1)pdm09 viruses. Combined phenotypic and PA sequence-based analysis showed that the global frequency of viruses showing reduced susceptibility to baloxavir or carrying substitutions associated with reduced susceptibility was low, 0.5% (72/15906) and 0.1% (18/15692) for the 2018–2019 and 2019–2020 periods, respectively. Most (n = 61) of these viruses had I38→T/F/M/S/L/V PA amino acid substitutions. In Japan, where baloxavir use was highest, the rate was 4.5% (41/919) in the 2018–2019 period and most of the viruses (n = 32) had PA-I38T. Zoonotic viruses isolated from humans (n = 32) in different countries did not contain substitutions in NA associated with NAI RI/HRI phenotypes. One A(H5N6) virus had a dual substitution PA-I38V + PA-E199G, which may reduce susceptibility to baloxavir. Therefore, NAIs and baloxavir remain appropriate choices for the treatment of influenza virus infections, but close monitoring of antiviral susceptibility is warranted

    Laboratory capability and surveillance testing for middle east respiratory syndrome coronavirus infection in the who European region, June 2013

    Get PDF
    Since September 2012, over 90 cases of respiratory disease caused by a novel coronavirus, now named Middle East respiratory syndrome coronavirus (MERS-CoV), have been reported in the Middle East and Europe. To ascertain the capabilities and testing experience of national reference laboratories across the World Health Organization (WHO) European Region to detect this virus, the European Centre for Disease Prevention and Control (ECDC) and the WHO Regional Office for Europe conducted a joint survey in November 2012 and a follow-up survey in June 2013. In 2013, 29 of 52 responding WHO European Region countries and 24 of 31 countries of the European Union/European Economic Area (EU/EEA) had laboratory capabilities to detect and confirm MERS-CoV cases, compared with 22 of 46 and 18 of 30 countries, respectively, in 2012. By June 2013, more than 2,300 patients had been tested in 23 countries in the WHO European Region with nine laboratory-confirmed MERS-CoV cases. These data indicate that the Region has developed significant capability to detect this emerging virus in accordance with WHO and ECDC guidance. However, not all countries had developed capabilities, and the needs to do so should be addressed. This includes enhancing collaborations between countries to ensure diagnostic capabilities for surveillance of MERS-CoV infections across the European Region

    Alternating patterns of seasonal influenza activity in the WHO European Region following the 2009 pandemic, 2010-2018

    No full text
    corecore