37 research outputs found

    Contaminant biotransport by Pacific salmon to Lake Michigan tributaries

    Get PDF
    The Great Lakes are ideal systems for evaluating the synergistic components of environmental change, such as exotic species introductions and legacy pollutants. Introduced Pacific Salmon (Oncorhynchus spp.) represent an intersection of these drivers because they are non-native species of economic importance that bioaccumulate contaminants during the open water phase of their life cycle. Furthermore, Pacific salmon can deliver a significant pulse of contaminated tissue to tributaries during spawning and subsequent death. Thus, salmon represent a key pathway by which contaminants accumulated in Lake Michigan are transported inland to tributaries that otherwise lack point source pollution. Our research has revealed that salmon exhibit basin-specific persistent organic pollutant (POP) and mercury (Hg) concentrations reflecting pollutant inputs from both current and historic sources. Overall, Lake Michigan salmon were more contaminated with POPs and Hg than conspecifics from Lakes Huron or Superior. Consequently, Lake Michigan salmon pose a higher risk and magnitude of contaminant biotransport and transfer. Resident stream fish (e.g., brook trout) sampled from salmon spawning reaches had higher pollutant concentrations than fish sampled from upstream reaches lacking salmon, but the extent of fish contamination varied among lake basins and streams. In general, Lake Michigan tributaries were the most impacted, suggesting a direct relationship between the extent of salmon-derived contaminant inputs and resident fish contaminant levels. Within and among lake basins, contaminant biotransport by salmon is context dependent and likely reflects a suite of ecological characteristics such as species identity and trophic position, dynamics of the salmon run, watershed land-use, and instream geomorphology such as sediment size. We suggest that future management of salmon-mediated contaminant biotransport to stream communities in the Great Lakes basin should consider biological, chemical, and physical factors that constitute the environmental context

    Contaminant biotransport by Pacific Salmon in Lake Michigan: analysis of salmon and stream-resident fish in Great Lakes tributaries

    Get PDF
    Pacific salmon (Oncorhynchus spp.) can deliver a significant pulse of biomass, including its bioaccumulated contaminants, to tributaries during spawning runs. Thus, salmon transport contaminants accumulated in the Great Lakes (e.g., persistent organic pollutants [POPs], total mercury [THg]) to tributaries that otherwise lack point source pollution. We used a combination of observational surveys, experimental manipulations, and modeling, to (1) assess the extent of salmon-mediated biotransport across the upper Great Lakes; (2) determine pathways by which stream fish become contaminated by salmon; and (3) forecast areas at significant risk from salmon biotransport. Resident stream fish (e.g., brook trout Salvelinus fontinalis) in salmon spawning reaches had higher POP concentrations than fish in upstream reaches lacking salmon, but the extent of contamination varied among lake basins and streams. In contrast, THg concentrations in the same fish did not differ between reaches with and without salmon spawners but exhibited considerable among-site variability. In general, resident fish in Lake Michigan tributaries were the most contaminated by POPs, suggesting a direct relationship between salmon-derived contaminant inputs and resident fish contaminant levels. Experimental exposure to salmon carcasses and eggs for 50 days increased brook trout POP concentrations by 50 times. Eggs are elevated in POPs but depleted in THg compared to whole salmon, suggesting that resident fish contaminant levels reflect direct consumption of eggs rather than indirect food web pathways. Our model suggests that salmon-mediated bioaccumulation is primarily influenced by the size and duration of salmon runs, and secondarily by factors including individual consumption rates, temperature regime, and background pollutant levels. Overall, our research provides increased understanding on the physical, chemical, and biological controls of salmon contaminant biotransport in the Great Lakes region. This research will help inform management decisions in this region with respect to legacy pollution, dam removal, stream connectivity, fish stocking, and non-native species in stream ecosystems

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Get PDF
    River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.peerReviewe

    The sound of recovery:Coral reef restoration success is detectable in the soundscape

    Get PDF
    Pantropical degradation of coral reefs is prompting considerable investment in their active restoration. However, current measures of restoration success are based largely on coral cover, which does not fully reflect ecosystem function or reef health. Soundscapes are an important aspect of reef health; loud and diverse soundscapes guide the recruitment of reef organisms, but this process is compromised when degradation denudes soundscapes. As such, acoustic recovery is a functionally important component of ecosystem recovery. Here, we use acoustic recordings taken at one of the world's largest coral reef restoration projects to test whether successful restoration of benthic and fish communities is accompanied by a restored soundscape. We analyse recordings taken simultaneously on healthy, degraded (extensive historic blast fishing) and restored reefs (restoration carried out for 1–3 years on previously degraded reefs). We compare soundscapes using manual counts of biotic sounds (phonic richness), and two commonly used computational analyses (acoustic complexity index [ACI] and sound-pressure level [SPL]). Healthy and restored reef soundscapes exhibited a similar diversity of biotic sounds (phonic richness), which was significantly higher than degraded reef soundscapes. This pattern was replicated in some automated analyses but not others; the ACI exhibited the same qualitative result as phonic richness in a low-frequency, but not a high-frequency bandwidth, and there was no significant difference between SPL values in either frequency bandwidth. Furthermore, the low-frequency ACI and phonic richness scores were only weakly correlated despite showing a qualitatively equivalent overall result, suggesting that these metrics are likely to be driven by different aspects of the reef soundscape. Synthesis and applications. These data show that coral restoration can lead to soundscape recovery, demonstrating the return of an important ecosystem function. They also suggest that passive acoustic monitoring (PAM) might provide functionally important measures of ecosystem-level recovery—but only some PAM metrics reflect ecological status, and those that did are likely to be driven by different communities of soniferous animals. Recording soundscapes represents a potentially valuable tool for evaluating restoration success across ecosystems, but caution must be exercised when choosing metrics and interpreting results
    corecore