1,268 research outputs found
Desarrollo e implementación de un hormigón reforzado con fibras sintéticas para la repavimentación de la Ruta 24 de Uruguay
Los pavimentos de hormigón son estructuras propensas a la fisuración. El uso de fibras aparece como una de las mejores alternativas técnico-económicas para mejorar el comportamiento del hormigón. Una de las aplicaciones del Hormigón Reforzado con Fibras (HRF) es la reparación o refuerzo (“overlays”) de antiguos pavimentos. En la actualidad se dispone de macrofi bras sintéticas que pueden utilizarse en este tipo de aplicaciones en lugar de las tradicionales fi bras de acero. Este trabajo transmite la experiencia adquirida durante la ejecución de la rehabilitación de la Ruta 24 en Uruguay empleando un “whitetopping” delgado (adherido) de HRF. Se describen los resultados obtenidos durante el control de calidad en obra y se discuten los principales desafíos durante la ejecución como el uso de un aditivo reductor de agua de alto rango, el empleo de tecnología de alto rendimiento y el logro de una adecuada adherencia HRF – sustrato asfáltico.Fil: Miguez Pessada, D.. Hormigones Artigas S.A.; UruguayFil: Gonzalez, A. C. Hormigones Artigas S.A.; UruguayFil: Violini, D.. Cementos Avellaneda S.A; ArgentinaFil: Pappalardi, M.. Cementos Avellaneda S.A.; ArgentinaFil: Zerbino, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Construcciones; Argentin
A robust SNP barcode for typing Mycobacterium tuberculosis complex strains
Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ~92k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ~7k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type
Safe and complete contig assembly via omnitigs
Contig assembly is the first stage that most assemblers solve when
reconstructing a genome from a set of reads. Its output consists of contigs --
a set of strings that are promised to appear in any genome that could have
generated the reads. From the introduction of contigs 20 years ago, assemblers
have tried to obtain longer and longer contigs, but the following question was
never solved: given a genome graph (e.g. a de Bruijn, or a string graph),
what are all the strings that can be safely reported from as contigs? In
this paper we finally answer this question, and also give a polynomial time
algorithm to find them. Our experiments show that these strings, which we call
omnitigs, are 66% to 82% longer on average than the popular unitigs, and 29% of
dbSNP locations have more neighbors in omnitigs than in unitigs.Comment: Full version of the paper in the proceedings of RECOMB 201
Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe
Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage
A Unifying Model of Genome Evolution Under Parsimony
We present a data structure called a history graph that offers a practical
basis for the analysis of genome evolution. It conceptually simplifies the
study of parsimonious evolutionary histories by representing both substitutions
and double cut and join (DCJ) rearrangements in the presence of duplications.
The problem of constructing parsimonious history graphs thus subsumes related
maximum parsimony problems in the fields of phylogenetic reconstruction and
genome rearrangement. We show that tractable functions can be used to define
upper and lower bounds on the minimum number of substitutions and DCJ
rearrangements needed to explain any history graph. These bounds become tight
for a special type of unambiguous history graph called an ancestral variation
graph (AVG), which constrains in its combinatorial structure the number of
operations required. We finally demonstrate that for a given history graph ,
a finite set of AVGs describe all parsimonious interpretations of , and this
set can be explored with a few sampling moves.Comment: 52 pages, 24 figure
The Echinococcus canadensis (G7) genome: A key knowledge of parasitic platyhelminth human diseases
Background: The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. Results: We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. Conclusions: This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.Fil: Maldonado, Lucas Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Assis, Juliana. Fundación Oswaldo Cruz; BrasilFil: Gomes Araújo, Flávio M.. Fundación Oswaldo Cruz; BrasilFil: Salim, Anna C. M.. Fundación Oswaldo Cruz; BrasilFil: Macchiaroli, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Cucher, Marcela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Camicia, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Fox, Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Rosenzvit, Mara Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Oliveira, Guilherme. Instituto Tecnológico Vale; Brasil. Fundación Oswaldo Cruz; BrasilFil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin
Draft Genome Sequence of the Marine Streptomyces sp. Strain PP-C42, Isolated from the Baltic Sea
Streptomyces, a branch of aerobic Gram-positive bacteria represents the largest genus of actinobacteria. The streptomycetes are characterized by a complex secondary metabolism and produce over two-thirds of the clinically used natural antibiotics today. Here we report the draft genome sequence of a Streptomyces strain PP-C42 isolated from the marine environment. A subset of unique genes and gene clusters for diverse secondary metabolites as well as antimicrobial peptides (AMPs) could be identified from the genome, showing great promise as a source for novel bioactive compound
Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk
Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency
Portuguese Foundation for Science and Technology
CRESC ALGARVE 2020
European Union (EU)
303745
Maratona da Saude Award
DL 57/2016/CP1361/CT0042
SFRH/BPD/99502/2014
CBMR-UID/BIM/04773/2013
POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio
Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae
The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacteria populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated twelve major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan-genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of eleven populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation
Draft Genome Sequence of the Marine Streptomyces sp. Strain PP-C42, Isolated from the Baltic Sea
Streptomyces, a branch of aerobic Gram-positive bacteria represents the largest genus of actinobacteria. The streptomycetes are characterized by a complex secondary metabolism and produce over two-thirds of the clinically used natural antibiotics today. Here we report the draft genome sequence of a Streptomyces strain PP-C42 isolated from the marine environment. A subset of unique genes and gene clusters for diverse secondary metabolites as well as antimicrobial peptides (AMPs) could be identified from the genome, showing great promise as a source for novel bioactive compound
- …
