65 research outputs found

    Submarine mass movements around the Iberian Peninsula. The building of continental margins through hazardous processes

    Get PDF
    Submarine mass movements, such as those which occur in all environments in every ocean of the world, are widely distributed across the Iberian continental margins. A lack of consistent data from various areas around the Iberian Peninsula makes it difficult to precisely understand their role in the sedimentary record. However, all the studies carried out over the past two decades reveal that they are a recurrent and widespread sedimentary process that may represent a significant geohazard. The majority of submarine mass movements observed in both the Mediterranean and Atlantic margins of the Iberian Peninsula have been generically identified as Mass Transport Deposits, but debris flows, slides, slumps and turbidites are common. Only a few remarkable examples involve huge volumes of sediment covering large areas (such as ~500 km3 and ~6x104 km2 ), but more moderate deposits (<200 km2 ) are frequently found on the seafloor or embedded in the sedimentary sequences, building margins and basins

    Large sediment waves on the Gulf of Valencia continental margin (NW Mediterranean): internal structure and evolution

    Get PDF
    Several fields of sediment waves have been recently observed over the Gulf of Valencia (NW Mediterranean) continental margin. Based on their morphology and internal structure, two different sets of sediment waves can be distinguished. Large sediment waves with 500 to 1000m wavelengths and 2 to 50m wave height are developed on the foreset region of the prograding margin clinoform, being found from 250 to 850m water depth. Additionally, over the outer shelf region, a second group of sediment waves also develops; displaying wavelengths in between 400 m and 800m and heights of 2 to 4m. Eustatic cycles control the development of the sediment waves on the outer continental shelf, which show several erosional truncations and growing stages. However, the sediment waves over the continental slope region seem to continuously evolve through time, at least since the Early/Lower Pliocene, without being affected by sea level changes

    Slope Instability along the northeastern Iberian and Balearic continental margins

    Get PDF
    This paper gathers the available information on submarine landslides identified in the northeastern Iberian continental margin and presents new data on both already known landslides and new, previously unknown ones. The 2,000 km2, 26 km3 resulting deposit of the BIG’95 debris flow in the Ebro margin; the 4 up to 16 km2, 0.4 km3 Eivissa slides in the Eivissa Channel; the 2 up to 65.6 km2, 1.46 km3 Barcelona slides in the shallow southern Catalan margin; and the western Gulf of Lions debris flow in the deep north Catalan margin are presented. This compilation is completed with several other previously undescribed small-scale mass-wasting deposits together with those observed in the Balearic Promontory. The amount and widespreading of submarine landslide deposits in the northern Iberian margins demonstrate that these margins are not an exception to the common occurence of these kind of structures worldwide, and gives an idea on this phenomena recurrence even in margins considered moderately quiet, in terms of seismicit

    Slope Instability along the northeastern Iberian and Balearic continental margins

    Get PDF
    This paper gathers the available information on submarine landslides identified in the northeastern Iberian continental margin and presents new data on both already known landslides and new, previously unknown ones. The 2,000 km2, 26 km3 resulting deposit of the BIG'95 debris flow in the Ebro margin; the 4 up to 16 km2, 0.4 km3 Eivissa slides in the Eivissa Channel; the 2 up to 65.6 km2, 1.46 km3 Barcelona slides in the shallow southern Catalan margin; and the western Gulf of Lions debris flow in the deep north Catalan margin are presented. This compilation is completed with several other previously undescribed small-scale mass-wasting deposits together with those observed in the Balearic Promontory. The amount and widespreading of submarine landslide deposits in the northern Iberian margins demonstrate that these margins are not an exception to the common occurence of these kind of structures worldwide, and gives an idea on this phenomena recurrence even in margins considered moderately quiet, in terms of seismicity

    Survival of a submarine canyon during long-term outbuilding of a continental margin

    Get PDF
    Net-depositional submarine canyons are common in continental slope strata, but how they survive and prograde on constructional margins is poorly understood. In this study we present field evidence for the coevolution of a submarine canyon and the adjacent continental slope. Using a three-dimensional seismic data cube that images the Ebro margin (northwest Mediterranean), we identify a preserved canyon on a middle Pleistocene paleosurface and relate it directly to its expression on the present-day seafloor. A subparallel stacking pattern of seismic reflectors, similar to that seen between prograding clinoforms in intercanyon areas, is observed between the modern and paleocanyon thalwegs. The concavity of the modern long profile differs from the convex-concave long profile on the middle Pleistocene surface, suggesting a long-term change in canyon sedimentation. We interpret this change as a shift to a canyon dominated by turbidity currents from one strongly influenced by the pattern of sedimentation that built the open-slope canyon interfluves. We find support for our interpretation in previous studies of the Ebro margin

    Geomorphology and development of a high-latitude channel system: the INBIS channel case (NW Barents Sea, Arctic)

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Arktos. The final authenticated version is available online at: http://dx.doi.org/https://doi.org/10.1007/s41063-019-00065-9 .The INBIS (Interfan Bear Island and Storfjorden) channel system is a rare example of a deep-sea channel on a glaciated margin. The system is located between two trough mouth fans (TMFs) on the continental slope of the NW Barents Sea: the Bear Island and the Storfjorden–Kveithola TMFs. New bathymetric data in the upper part of this channel system show a series of gullies that incise the shelf break and minor tributary channels on the upper part of the continental slope. These gullies and channels appear far more developed than those on the rest of the NW Barents Sea margin, increasing in size downslope and eventually merging into the INBIS channel. Morphological evidence suggests that the Northern part of the INBIS channel system preserved its original morphology over the last glacial maximum (LGM), whereas the Southern part experienced the emplacement of mass transport glacigenic debris that obliterated the original morphology. Radiometric analyses were applied on two sediment cores to estimate the recent (~ 110 years) sedimentation rates. Furthermore, analysis of grain size characteristics and sediment composition of two cores shows evidence of turbidity currents. We associate these turbidity currents with density-driven plumes, linked to the release of meltwater at the ice-sheet grounding line, cascading down the slope. This type of density current would contribute to the erosion and/ or preservation of the gullies’ morphologies during the present interglacial. We infer that Bear Island and the shallow morphology around it prevented the flow of ice streams to the shelf edge in this area, working as a pin (fastener) for the surrounding ice and allowing for the development of the INBIS channel system on the inter-ice stream part of the slope. The INBIS channel system was protected from the burial by high rates of ice-stream derived sedimentation and only partially affected by the local emplacement of glacial debris, which instead dominated on the neighbouring TMF systems

    Fracture and damage localization in volcanic edifice rocks from El Hierro, Stromboli and Tenerife

    Get PDF
    © 2018 The Author(s). We present elastic wave velocity and strength data from a suite of three volcanic rocks taken from the volcanic edifices of El Hierro and Tenerife (Canary Islands, Spain), and Stromboli (Aeolian Islands, Italy). These rocks span a range of porosity and are taken from volcanoes that suffer from edifice instability. We measure elastic wave velocities at known incident angles to the generated through-going fault as a function of imposed strain, and examine the effect of the damage zone on P-wave velocity. Such data are important as field measurements of elastic wave tomography are key tools for understanding volcanic regions, yet hidden fractures are likely to have a significant effect on elastic wave velocity. We then use elastic wave velocity evolution to calculate concomitant crack density evolution which ranges from 0 to 0.17: highest values were correlated to the damage zone in rocks with the highest initial porosity

    Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP Expedition 340

    Get PDF
    IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor-sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of pre-existing low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or micro-faulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor-sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits comprised of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution dataset to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes. This article is protected by copyright. All rights reserved
    corecore