49 research outputs found

    Inducing a topological transition in graphene nanoribbon superlattices by external strain

    Get PDF
    Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∌3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states.Fil: Flores GutierrĂ©z, Esteban. Universidad de Chile; ChileFil: Mella, JosĂ© D.. Universidad de Chile; ChileFil: Aparicio, Emiliano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Gonzalez, Rafael I.. Universidad Mayor; Chile. Centro para el Desarrollo de la Nanociencia y la NanotecnologĂ­a; ChileFil: Parra, C.. Universidad Mayor; ChileFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; ChileFil: Munoz, Francisco. Centro para el Desarrollo de la Nanociencia y la NanotecnologĂ­a; Chile. Universidad de Chile; Chil

    Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation

    Get PDF
    Background: Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc) sp. strain PCC 7120 (hereafter Anabaena) is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results: Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions) and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs), and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions: Directional RNA-seq data were obtained that provide comprehensive mapping of transcript boundaries and abundance for all transcribed RNAs in Anabaena filaments during the response to nitrogen deprivation. We have identified genes and noncoding RNAs that are transcriptionally regulated during heterocyst development. These data provide detailed information on the Anabaena transcriptome as filaments undergo heterocyst development and begin nitrogen fixation

    The diversity and distribution of D1 proteins in cyanobacteria

    Get PDF
    The psbA gene family in cyanobacteria encodes different forms of the D1 protein that is part of the Photosystem II reaction centre. We have identified a phylogenetically distinct D1 group that is intermediate between previously identified G3-D1 and G4-D1 proteins (Cardona et al. Mol Biol Evol 32:1310–1328, 2015). This new group contained two subgroups: D1INT, which was frequently in the genomes of heterocystous cyanobacteria and D1FR that was part of the far-red light photoacclimation gene cluster of cyanobacteria. In addition, we have identified subgroups within G3, the micro-aerobically expressed D1 protein. There are amino acid changes associated with each of the subgroups that might affect the function of Photosystem II. We show a phylogenetically broad range of cyanobacteria have these D1 types, as well as the genes encoding the G2 protein and chlorophyll f synthase. We suggest identification of additional D1 isoforms and the presence of multiple D1 isoforms in phylogenetically diverse cyanobacteria supports the role of these proteins in conferring a selective advantage under specific conditions

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Chemical and Sensory Effects of Storing Sauvignon Blanc Wine in Colored Bottles under Artificial Light

    No full text
    Univ Talca, Sch Agr Sci, Talca 3460000, Chile. Laurie, VF (Felipe Laurie, V.)The chemical and sensory effects of storing Sauvignon Blanc in colored bottles and exposing them to artificial light were examined. The colors of the bottles chosen were Dead Leaf Green, Antique Green, Amber, and Flint. The light was provided by fluorescent tubes with a regime of 16 h of exposure during 8 months of storage. The results indicated that the wine's chemical composition was affected by the type of bottle used. The Flint bottle presented the lowest concentration of total phenols. Yellow coloration was not dependent on the bottle color, as the wine in darker bottles (Amber, Antique Green, and Dead Leaf Green) had considerably more yellow color development than the wine in clear bottles. With regard to the sensory analyses performed, a trend showing an increase in color intensity and a decrease in overall aromas depending on the bottle color was observed. The wine's aromatic description changed significantly during its storage under artificial light conditions, demonstrating a decrease in vegetal aromas and an increase in citrus and tropical flavors that was dependent on the bottle color

    Adsorption of 2-thiophene curcuminoid molecules on a Au(111) surface

    No full text
    We provide a systematic ab initio study on the adsorption of 2-thiophene curcuminoid (2-thphCCM) molecules on a Au(111) surface. In this work we present the determination of the optimal configuration of a single molecule on the surface as well as a detailed study of the energetics of the different arrangements of two molecules considering their intermolecular interactions. We simulate the STM measurements associated with the optimal configuration and compare it with the experimental data.Proyecto Anillo ACT 1117 Fondecyt 1140759 1150072 1110206 Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia (Chile) FB 0807 DIUFRO Project DI17-0027 CILIS - Fondo de Innovacion para la Competitividad, del Ministerio de Economia, Fomento y Turismo, Chile RC 13000

    Over-calcified forms of the coccolithophore Emiliania huxleyi in high-CO2 waters are not preadapted to ocean acidification

    No full text
    Marine multicellular organisms inhabiting waters with natural high fluctuations in pH appear more tolerant to acidification than conspecifics occurring in nearby stable waters, suggesting that environments of fluctuating pH hold genetic reservoirs for adaptation of key groups to ocean acidification (OA). The abundant and cosmopolitan calcifying phytoplankton Emiliania huxleyi exhibits a range of morphotypes with varying degrees of coccolith mineralization. We show that E. huxleyi populations in the naturally acidified upwelling waters of the eastern South Pacific, where pH drops below 7.8 as is predicted for the global surface ocean by the year 2100, are dominated by exceptionally over-calcified morphotypes whose distal coccolith shield can be almost solid calcite. Shifts in morphotype composition of E. huxleyi populations correlate with changes in carbonate system parameters. We tested if these correlations indicate that the hyper-calcified morphotype is adapted to OA. In experimental exposures to present-day vs. future pCO2 (400 vs. 1200 ”atm), the over-calcified morphotypes showed the same growth inhibition (−29.1±6.3 %) as moderately calcified morphotypes isolated from non-acidified water (−30.7±8.8 %). Under the high-CO2–low-pH condition, production rates of particulate organic carbon (POC) increased, while production rates of particulate inorganic carbon (PIC) were maintained or decreased slightly (but not significantly), leading to lowered PIC ∕ POC ratios in all strains. There were no consistent correlations of response intensity with strain origin. The high-CO2–low-pH condition affected coccolith morphology equally or more strongly in over-calcified strains compared to moderately calcified strains. High-CO2–low-pH conditions appear not to directly select for exceptionally over-calcified morphotypes over other morphotypes, but perhaps indirectly by ecologically correlated factors. More generally, these results suggest that oceanic planktonic microorganisms, despite their rapid turnover and large population sizes, do not necessarily exhibit adaptations to naturally high-CO2 upwellings, and this ubiquitous coccolithophore may be near the limit of its capacity to adapt to ongoing ocean acidification

    Efficient CO2 fixation by surface Prochlorococcus in the Atlantic Ocean

    Get PDF
    Nearly half of the Earth’s surface is covered by the ocean populated by the most abundant photosynthetic organisms on the planet—Prochlorococcus cyanobacteria. However, in the oligotrophic open ocean, the majority of their cells in the top half of the photic layer have levels of photosynthetic pigmentation barely detectable by flow cytometry, suggesting low efficiency of CO2 fixation compared with other phytoplankton living in the same waters. To test the latter assumption, CO2 fixation rates of flow cytometrically sorted 14C-labelled phytoplankton cells were directly compared in surface waters of the open Atlantic Ocean (30°S to 30°N). CO2 fixation rates of Prochlorococcus are at least 1.5–2.0 times higher than CO2 fixation rates of the smallest plastidic protists and Synechococcus cyanobacteria when normalised to photosynthetic pigmentation assessed using cellular red autofluorescence. Therefore, our data indicate that in oligotrophic oceanic surface waters, pigment minimisation allows Prochlorococcus cells to harvest plentiful sunlight more effectively than other phytoplankton

    Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming?

    Get PDF
    Biological communities populating the Mediterranean Sea, which is situated at the northern boundary of the subtropics, are often claimed to be particularly affected by global warming. This is indicated, for instance, by the introduction of (sub) tropical species of fish or invertebrates that can displace local species. This raises the question of whether microbial communities are similarly affected, especially in the Levantine basin where sea surface temperatures have significantly risen over the last 25 years (0.50 +/- 0.11 degrees C in average per decade, P < 0.01). In this paper, the genetic diversity of the two most abundant members of the phytoplankton community, the picocyanobacteria Prochlorococcus and Synechococcus, was examined during two cruises through both eastern and western Mediterranean Sea basins held in September 1999 (PROSOPE cruise) and in June-July 2008 (BOUM cruise). Diversity was studied using dot blot hybridization with clade-specific 16S rRNA oligonucleotide probes and/or clone libraries of the 16S-23S ribosomal DNA Internal Transcribed Spacer (ITS) region, with a focus on the abundance of clades that may constitute bioindicators of warm waters. During both cruises, the dominant Prochlorococcus clade in the upper mixed layer at all stations was HLI, a clade typical of temperate waters, whereas the HLII clade, the dominant group in (sub) tropical waters, was only present at very low concentrations. The Synechococcus community was dominated by clades I, III and IV in the northwestern waters of the Gulf of Lions and by clade III and groups genetically related to clades WPC1 and VI in the rest of the Mediterranean Sea. In contrast, only a few sequences of clade II, a group typical of warm waters, were observed. These data indicate that local cyanobacterial populations have not yet been displaced by their ( sub) tropical counterparts
    corecore