662 research outputs found
Pericarditis Constrictiva in a 10-Year-Old Boy After Influenza A Virus Infection
Pericarditis constrictiva is caused by fibrotic degeneration of the pericardium and leads to impaired diastolic ventricular filling. The diagnosis of constrictive pericarditis in children remains challenging and often requires a multimodal approach. We present a case of a pericarditis constrictiva in a 10-year old boy after influenza A virus infection. Clinicians should be aware of this complication, especially in patients with symptoms of exertional dyspnea and congestive heart failur
Practical guidelines for optimising free energy calculations using thermodynamic integration
Free energy calculations are valuable in structure-based drug design, but their accuracy and reliability remain challenges. We present an automated workflow for estimation of protein–ligand binding affinity built with AMBER20, alchemlyb, and open-source cycle closure algorithm. Evaluated on 178 perturbations across four datasets, the short sub-nanosecond simulations performed comparably or better than prior studies for the MCL1, BACE, and CDK2 datasets, while the TYK2 dataset required a longer equilibration time (∼2ns). Perturbations with |ΔΔG|>2.0 kcal/mol exhibited higher errors, suggesting such perturbations are unreliable, hence providing a practical guideline for improving thermodynamic integration simulations
Pericarditis constrictiva in a 10-year-old boy after influenza A virus infection
Pericarditis constrictiva is caused by fibrotic degeneration of the pericardium and leads to impaired diastolic ventricular filling. The diagnosis of constrictive pericarditis in children remains challenging and often requires a multimodal approach. We present a case of a pericarditis constrictiva in a 10-year old boy after influenza A virus infection. Clinicians should be aware of this complication, especially in patients with symptoms of exertional dyspnea and congestive heart failure
How should the completeness and quality of curated nanomaterial data be evaluated?
Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated
Cantrell's Syndrome Forme Fruste in a Newborn Diagnosed by Transthoracic Echocardiography and Cardiac Magnetic Resonance Imaging
Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging
The antiangiogenic activity of naturally occurring and synthetic homoisoflavonoids from the Hyacinthaceae (sensu APGII)
Excessive blood vessel formation in the eye is implicated in wet age-related macular degeneration, proliferative diabetic retinopathy, neovascular glaucoma, and retinopathy of prematurity, which are major causes of blindness. Small molecule antiangiogenic drugs are strongly needed to supplement existing biologics. Homoisoflavonoids have been previously shown to have potent antiproliferative activities in endothelial cells over other cell types. Moreover, they demonstrated a strong antiangiogenic potential in vitro and in vivo in animal models of ocular neovascularization. Here, we tested the antiangiogenic activity of a group of naturally occurring homoisoflavonoids isolated from the family Hyacinthaceae and related synthetic compounds, chosen for synthesis based on structure–activity relationship observations. Several compounds showed interesting antiproliferative and antiangiogenic activities in vitro on retinal microvascular endothelial cells, a disease-relevant cell type, with the synthetic chromane, 46, showing the best activity (GI50 of 2.3 × 10–4 μM)
- …
