137 research outputs found

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells

    Get PDF
    Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS) resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy

    Revisiting the membrane-centric view of diabetes

    Full text link
    Fundamental questions remain unresolved in diabetes: What is the actual mechanism of glucose toxicity? Why is there insulin resistance in type 2 diabetes? Why do diets rich in sugars or saturated fatty acids increase the risk of developing diabetes? Studying the C. elegans homologs of the anti-diabetic adiponectin receptors (AdipoR1 and AdipoR2) has led us to exciting new discoveries and to revisit what may be termed “The Membrane Theory of Diabetes”. We hypothesize that excess saturated fatty acids (obtained through a diet rich in saturated fats or through conversion of sugars into saturated fats via lipogenesis) leads to rigid cellular membranes that in turn impair insulin signalling, glucose uptake and blood circulation, thus creating a vicious cycle that contributes to the development of overt type 2 diabetes. This hypothesis is supported by our own studies in C. elegans and by a wealth of literature concerning membrane composition in diabetics. The purpose of this review is to survey this literature in the light of the new results, and to provide an admittedly membrane-centric view of diabetes
    corecore