552 research outputs found

    Box H/ACA snoRNAs are preferred substrates for the trimethylguanosine synthase in the divergent unicellular eukaryote Trichomonas vaginalis.

    Get PDF
    The 2,2,7-trimethylguanosine caps of eukaryal snRNAs and snoRNA are formed by the enzyme Tgs1, which catalyzes sequential guanine-N2 methylations of m7G caps. Atypically, in the divergent unicellular eukaryote Trichomonas vaginalis, spliceosomal snRNAs lack a guanosine cap and the recombinant T. vaginalis trimethylguanosine synthase (TvTgs) produces only m2,7G in vitro. Here, we show by direct metabolic labeling that endogenous T. vaginalis RNAs contain m7G, m2,7G, and m2,2,7G caps. Immunodepletion of TvTgs from cell extracts and TvTgs add-back experiments demonstrate that TvTgs produces m2,7G and m2,2,7G caps. Expression of TvTgs in yeast tgs1D cells leads to the formation of m2,7G and m2,2,7G caps and complementation of the lethality of a tgs1D mud2D strain. Whereas TvTgs is present in the nucleus and cytosol of T. vaginalis cells, TMG-containing RNAs are localized primarily in the nucleolus. Molecular cloning of anti-TMG affinity-purified T. vaginalis RNAs identified 16 box H/ACA snoRNAs, which are implicated in guiding RNA pseudouridylation. The ensemble of new T. vaginalis H/ACA snoRNAs allowed us to predict and partially validate an extensive map of pseudouridines in T. vaginalis rRNA

    High-yield production of short GpppA- and (7Me)GpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2′O positions

    Get PDF
    Many eukaryotic and viral mRNAs, in which the first transcribed nucleotide is an adenosine, are decorated with a cap-1 structure, (7Me)G(5′)-ppp(5′)-A(2′OMe). The positive-sense RNA genomes of flaviviruses (Dengue, West Nile virus) for example show strict conservation of the adenosine. We set out to produce GpppA- and (7Me)GpppA-capped RNA oligonucleotides for non-radioactive mRNA cap methyltransferase assays and, in perspective, for studies of enzyme specificity in relation to substrate length as well as for co-crystallization studies. This study reports the use of a bacteriophage T7 DNA primase fragment to synthesize GpppAC(n) and (7Me)GpppAC(n) (1 ≤ n ≤ 9) in a one-step enzymatic reaction, followed by direct on-line cleaning HPLC purification. Optimization studies show that yields could be modulated by DNA template, enzyme and substrate concentration adjustments and longer reaction times. Large-scale synthesis rendered pure (in average 99%) products (1 ≤ n ≤ 7) in quantities of up to 100 nmol starting from 200 nmol cap analog. The capped RNA oligonucleotides were efficient substrates of Dengue virus (nucleoside-2′-O-)-methyltransferase, and human (guanine-N7)-methyltransferase. Methyltransfer reactions were monitored by a non-radioactive, quantitative HPLC assay. Additionally, the produced capped RNAs may serve in biochemical, inhibition and structural studies involving a variety of eukaryotic and viral methyltransferases and guanylyltransferases

    Neurovisceral phenotypes in the expression of psychiatric symptoms

    Get PDF
    This review explores the proposal that vulnerability to psychological symptoms, particularly anxiety, originates in constitutional differences in the control of bodily state, exemplified by a set of conditions that include Joint Hypermobility, Postural Tachycardia Syndrome and Vasovagal Syncope. Research is revealing how brainbody mechanisms underlie individual differences in psychophysiological reactivity that can be important for predicting, stratifying and treating individuals with anxiety disorders and related conditions. One common constitutional difference is Joint Hypermobility, in which there is an increased range of joint movement as a result of a variant of collagen. Joint hypermobility is over-represented in people with anxiety, mood and neurodevelopmental disorders. It is also linked to stress-sensitive medical conditions such as irritable bowel syndrome, chronic fatigue syndrome and fibromyalgia. Structural differences in 'emotional' brain regions are reported in hypermobile individuals, and many people with joint hypermobility manifest autonomic abnormalities, typically Postural Tachycardia Syndrome. Enhanced heart rate reactivity during postural change and as recently recognised factors causing vasodilatation (as noted post prandially, post exertion and with heat) is characteristic of Postural Tachycardia Syndrome, and there is a phenomenological overlap with anxiety disorders, which may be partially accounted for by exaggerated neural reactivity within ventromedial prefrontal cortex. People who experience Vasovagal Syncope, a heritable tendency to fainting induced by emotional challenges (and needle/blood phobia), are also more vulnerable to anxiety disorders. Neuroimaging implicates brainstem differences in vulnerability to faints, yet the structural integrity of the caudate nucleus appears important for the control of fainting frequency in relation to parasympathetic tone and anxiety. Together there is clinical and neuroanatomical evidence to show that common constitutional differences affecting autonomic responsivity are linked to psychiatric symptoms, notably anxiety

    Thalamocortical disconnection affects the somatic marker and social cognition: a case report

    Get PDF
    Thalamo-cortical connectivity was characterised in a patient with bilateral infarct of the thalami, without evidence of cognitive deficits in everyday life. Patient underwent social and emotional tests, Iowa Gambling Task (IGT), with and without concomitant heart rate variability (HRV) recording and at 3T-MRI to assess thalamo-cortical connectivity. Patient showed impairment at the IGT, in somatic marker, in emotions and theory of mind. MRI documented a bilateral damage of the centromedian-parafascicular complex. Patient's thalamic lesions disconnected brain areas involved in decision-making and autonomic regulation, affecting the somatic marker and resulting in the neuropsychological deficit exhibited by L.C

    NS3 protease from flavivirus as a target for designing antiviral inhibitors against dengue virus

    Get PDF
    The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS) proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of dengue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein

    Analysis of RNA Binding by the Dengue Virus NS5 RNA Capping Enzyme

    Get PDF
    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5′ end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the KD for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5′ phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5′ di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented

    Novel ATP-Independent RNA Annealing Activity of the Dengue Virus NS3 Helicase

    Get PDF
    The flavivirus nonstructural protein 3 (NS3) bears multiple enzymatic activities and represents an attractive target for antiviral intervention. NS3 contains the viral serine protease at the N-terminus and ATPase, RTPase, and helicase activities at the C-terminus. These activities are essential for viral replication; however, the biological role of RNA remodeling by NS3 helicase during the viral life cycle is still unclear. Secondary and tertiary RNA structures present in the viral genome are crucial for viral replication. Here, we used the NS3 protein from dengue virus to investigate functions of NS3 associated to changes in RNA structures. Using different NS3 variants, we characterized a domain spanning residues 171 to 618 that displays ATPase and RNA unwinding activities similar to those observed for the full-length protein. Interestingly, we found that, besides the RNA unwinding activity, dengue virus NS3 greatly accelerates annealing of complementary RNA strands with viral or non-viral sequences. This new activity was found to be ATP-independent. It was determined that a mutated NS3 lacking ATPase activity retained full-RNA annealing activity. Using an ATP regeneration system and different ATP concentrations, we observed that NS3 establishes an ATP-dependent steady state between RNA unwinding and annealing, allowing modulation of the two opposing activities of this enzyme through ATP concentration. In addition, we observed that NS3 enhanced RNA-RNA interactions between molecules representing the ends of the viral genome that are known to be necessary for viral RNA synthesis. We propose that, according to the ATP availability, NS3 could function regulating the folding or unfolding of viral RNA structures

    Increased TIMP-3 expression alters the cellular secretome through dual inhibition of the metalloprotease ADAM10 and ligand-binding of the LRP-1 receptor

    Get PDF
    The tissue inhibitor of metalloproteinases-3 (TIMP-3) is a major regulator of extracellular matrix turnover and protein shedding by inhibiting different classes of metalloproteinases, including disintegrin metalloproteinases (ADAMs). Tissue bioavailability of TIMP-3 is regulated by the endocytic receptor low-density-lipoprotein receptor-related protein-1 (LRP-1). TIMP-3 plays protective roles in disease. Thus, different approaches have been developed aiming to increase TIMP-3 bioavailability, yet overall effects of increased TIMP-3 in vivo have not been investigated. Herein, by using unbiased mass-spectrometry we demonstrate that TIMP-3-overexpression in HEK293 cells has a dual effect on shedding of transmembrane proteins and turnover of soluble proteins. Several membrane proteins showing reduced shedding are known as ADAM10 substrates, suggesting that exogenous TIMP-3 preferentially inhibits ADAM10 in HEK293 cells. Additionally identified shed membrane proteins may be novel ADAM10 substrate candidates. TIMP-3-overexpression also increased extracellular levels of several soluble proteins, including TIMP-1, MIF and SPARC. Levels of these proteins similarly increased upon LRP-1 inactivation, suggesting that TIMP-3 increases soluble protein levels by competing for their binding to LRP-1 and their subsequent internalization. In conclusion, our study reveals that increased levels of TIMP-3 induce substantial modifications in the cellular secretome and that TIMP-3-based therapies may potentially provoke undesired, dysregulated functions of ADAM10 and LRP-1
    corecore