41 research outputs found

    Why a randomised melanoma screening trial may be a good idea

    Get PDF
    We read with interest the letter by Halvorsen et\ua0al. These authors demonstrated in Table 1 that the number needed to invite to prevent one melanoma death is inversely proportional to the mortality rate in the cohort. Whether or not a screening trial is feasible depends on this and many other factors, including the primary outcome, incidence, the screening test's accuracy, and contamination of the control group (in the case of a melanoma screening by opportunistic skin checks). This article is protected by copyright. All rights reserved

    Doctors’ recognition and management of melanoma patients’ risk: an Australian population-based study

    Get PDF
    Background Guidelines recommend that health professionals identify and manage individuals at high risk of developing melanoma, but there is limited population-based evidence demonstrating real-world practices. Objective A population-based, observational study was conducted in the state of New South Wales, Australia to determine doctors’ knowledge of melanoma patients’ risk and to identify factors associated with better identification and clinical management. Methods Data were analysed for 1889 patients with invasive, localised melanoma in the Melanoma Patterns of Care study. This study collected data on all melanoma diagnoses notified to the state’s cancer registry during a 12-month period from 2006 to 2007, as well as questionnaire data from the doctors involved in their care. Results Three-quarters (74%) of patients had doctors who were aware of their risk factor status with respect to personal and family history of melanoma and the presence of many moles. Doctors working in general practice, skin cancer clinics and dermatology settings had better knowledge of patients’ risk factors than plastic surgeons. Doctors were 15% more likely to know the family history of younger melanoma patients (<40 years) than of those ≥80 years (95% confidence interval 4–26%). Early detection-related follow-up advice was more likely to be given to younger patients, by doctors aware of their patients’ risk status, by doctors practising in plastic surgery, dermatology and skin cancer clinic settings, and by female doctors. Conclusion Both patient-related and doctor-related factors were associated with doctors’ recognition and management of melanoma patients’ risk and could be the focus of strategies for improving care

    Development and external validation study of a melanoma risk prediction model incorporating clinically assessed naevi and solar lentigines

    Get PDF
    Background: Melanoma risk prediction models could be useful for matching preventive interventions to patients’ risk. Objectives: To develop and validate a model for incident first‐primary cutaneous melanoma using clinically assessed risk factors. Methods: We used unconditional logistic regression with backward selection from the Australian Melanoma Family Study (461 cases and 329 controls) in which age, sex and city of recruitment were kept in each step, and we externally validated it using the Leeds Melanoma Case–Control Study (960 cases and 513 controls). Candidate predictors included clinically assessed whole‐body naevi and solar lentigines, and self‐assessed pigmentation phenotype, sun exposure, family history and history of keratinocyte cancer. We evaluated the predictive strength and discrimination of the model risk factors using odds per age‐ and sex‐adjusted SD (OPERA) and the area under curve (AUC), and calibration using the Hosmer–Lemeshow test. Results: The final model included the number of naevi ≥ 2 mm in diameter on the whole body, solar lentigines on the upper back (a six‐level scale), hair colour at age 18 years and personal history of keratinocyte cancer. Naevi was the strongest risk factor; the OPERA was 3·51 [95% confidence interval (CI) 2·71–4·54] in the Australian study and 2·56 (95% CI 2·23–2·95) in the Leeds study. The AUC was 0·79 (95% CI 0·76–0·83) in the Australian study and 0·73 (95% CI 0·70–0·75) in the Leeds study. The Hosmer–Lemeshow test P‐value was 0·30 in the Australian study and < 0·001 in the Leeds study. Conclusions: This model had good discrimination and could be used by clinicians to stratify patients by melanoma risk for the targeting of preventive interventions. What's already known about this topic? Melanoma risk prediction models may be useful in prevention by tailoring interventions to personalized risk levels. For reasons of feasibility, time and cost many melanoma prediction models use self‐assessed risk factors. However, individuals tend to underestimate their naevus numbers. What does this study add? We present a melanoma risk prediction model, which includes clinically‐assessed whole‐body naevi and solar lentigines, and self‐assessed risk factors including pigmentation phenotype and history of keratinocyte cancer. This model performs well on discrimination, the model's ability to distinguish between individuals with and without melanoma, and may assist clinicians to stratify patients by melanoma risk for targeted preventive interventions

    The effect on melanoma risk of genes previously associated with telomere length.

    Get PDF
    Telomere length has been associated with risk of many cancers, but results are inconsistent. Seven single nucleotide polymorphisms (SNPs) previously associated with mean leukocyte telomere length were either genotyped or well-imputed in 11108 case patients and 13933 control patients from Europe, Israel, the United States and Australia, four of the seven SNPs reached a P value under .05 (two-sided). A genetic score that predicts telomere length, derived from these seven SNPs, is strongly associated (P = 8.92x10(-9), two-sided) with melanoma risk. This demonstrates that the previously observed association between longer telomere length and increased melanoma risk is not attributable to confounding via shared environmental effects (such as ultraviolet exposure) or reverse causality. We provide the first proof that multiple germline genetic determinants of telomere length influence cancer risk.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/jnci/dju26

    Landscape of mutations in early stage primary cutaneous melanoma: An InterMEL study

    Get PDF
    It is unclear why some melanomas aggressively metastasize while others remain indolent. Available studies employing multi-omic profiling of melanomas are based on large primary or metastatic tumors. We examine the genomic landscape of early-stage melanomas diagnosed prior to the modern era of immunological treatments. Untreated cases with Stage II/III cutaneous melanoma were identified from institutions throughout the United States, Australia and Spain. FFPE tumor sections were profiled for mutation, methylation and microRNAs. Preliminary results from mutation profiling and clinical pathologic correlates show the distribution of four driver mutation sub-types: 31% BRAF; 18% NRAS; 21% NF1; 26% Triple Wild Type. BRAF mutant tumors had younger age at diagnosis, more associated nevi, more tumor infiltrating lymphocytes, and fewer thick tumors although at generally more advanced stage. NF1 mutant tumors were frequent on the head/neck in older patients with severe solar elastosis, thicker tumors but in earlier stages. Triple Wild Type tumors were predominantly male, frequently on the leg, with more perineural invasion. Mutations in TERT, TP53, CDKN2A and ARID2 were observed often, with TP53 mutations occurring particularly frequently in the NF1 sub-type. The InterMEL study will provide the most extensive multi-omic profiling of early-stage melanoma to date. Initial results demonstrate a nuanced understanding of the mutational and clinicopathological landscape of these early-stage tumors

    InterMEL: An international biorepository and clinical database to uncover predictors of survival in early-stage melanoma

    Get PDF
    INTRODUCTION: We are conducting a multicenter study to identify classifiers predictive of disease-specific survival in patients with primary melanomas. Here we delineate the unique aspects, challenges, and best practices for optimizing a study of generally small-sized pigmented tumor samples including primary melanomas of at least 1.05mm from AJTCC TNM stage IIA-IIID patients. We also evaluated tissue-derived predictors of extracted nucleic acids' quality and success in downstream testing. This ongoing study will target 1,000 melanomas within the international InterMEL consortium. METHODS: Following a pre-established protocol, participating centers ship formalin-fixed paraffin embedded (FFPE) tissue sections to Memorial Sloan Kettering Cancer Center for the centralized handling, dermatopathology review and histology-guided coextraction of RNA and DNA. Samples are distributed for evaluation of somatic mutations using next gen sequencing (NGS) with the MSK-IMPACTTM assay, methylation-profiling (Infinium MethylationEPIC arrays), and miRNA expression (Nanostring nCounter Human v3 miRNA Expression Assay). RESULTS: Sufficient material was obtained for screening of miRNA expression in 683/685 (99%) eligible melanomas, methylation in 467 (68%), and somatic mutations in 560 (82%). In 446/685 (65%) cases, aliquots of RNA/DNA were sufficient for testing with all three platforms. Among samples evaluated by the time of this analysis, the mean NGS coverage was 249x, 59 (18.6%) samples had coverage below 100x, and 41/414 (10%) failed methylation QC due to low intensity probes or insufficient Meta-Mixed Interquartile (BMIQ)- and single sample (ss)- Noob normalizations. Six of 683 RNAs (1%) failed Nanostring QC due to the low proportion of probes above the minimum threshold. Age of the FFPE tissue blocks (p<0.001) and time elapsed from sectioning to co-extraction (p = 0.002) were associated with methylation screening failures. Melanin reduced the ability to amplify fragments of 200bp or greater (absent/lightly pigmented vs heavily pigmented, p<0.003). Conversely, heavily pigmented tumors rendered greater amounts of RNA (p<0.001), and of RNA above 200 nucleotides (p<0.001). CONCLUSION: Our experience with many archival tissues demonstrates that with careful management of tissue processing and quality control it is possible to conduct multi-omic studies in a complex multi-institutional setting for investigations involving minute quantities of FFPE tumors, as in studies of early-stage melanoma. The study describes, for the first time, the optimal strategy for obtaining archival and limited tumor tissue, the characteristics of the nucleic acids co-extracted from a unique cell lysate, and success rate in downstream applications. In addition, our findings provide an estimate of the anticipated attrition that will guide other large multicenter research and consortia

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Supplementary Material for: Exploring the Potential Emotional and Behavioural Impact of Providing Personalised Genomic Risk Information to the Public: A Focus Group Study

    No full text
    <b><i>Aim:</i></b> To explore the potential emotional and behavioural impact of providing information on personalised genomic risk to the public, using melanoma as an example, to aid research translation. <b><i>Methods:</i></b> We conducted four focus groups in which 34 participants were presented with a hypothetical scenario of an individual's lifetime genomic risk of melanoma (using the term ‘genetic risk'). We asked about understanding of genetic risk, who would choose to receive this risk information, potential emotional and behavioural impacts, and other concerns or potential benefits. Data were analysed thematically. <b><i>Results:</i></b> Participants thought this risk information could potentially motivate preventive behaviours such as sun protection and related it to screening for other diseases including breast cancer. Factors identified as influencing the decision to receive genetic risk information included education level, children, age and gender. Participants identified potential negative impacts on the recipient such as anxiety and worry, and proposed that this could be mitigated by providing additional explanatory and prevention information, and contact details of a health professional for further discussion. Participants' concerns included workplace and insurance discrimination. <b><i>Conclusion:</i></b> Participants recognised the potential for both positive and negative emotional and behavioural impacts related to receiving information on the personalised genomic risk of melanoma
    corecore