127 research outputs found

    A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high resolution simulation of Hurricane Bonnie (1998)

    Get PDF
    The transport and mixing characteristics of a large sample of air parcels within a mature and vertically sheared hurricane vortex is examined. Data from a high-resolution (2 km grid spacing) numerical simulation of "real-case" Hurricane Bonnie (1998) is used to calculate Lagrangian trajectories of air parcels in various subdomains of the hurricane (namely, the eye, eyewall, and near-environment) to study the degree of interaction (transport and mixing) between these subdomains. It is found that 1) there is transport and mixing from the low-level eye to the eyewall that carries high- Be air which can enhance the efficiency of the hurricane heat engine; 2) a portion of the low-level inflow of the hurricane bypasses the eyewall to enter the eye, that both replaces the mass of the low-level eye and lingers for a sufficient time (order 1 hour) to acquire enhanced entropy characteristics through interaction with the ocean beneath the eye; 3) air in the mid- to upper-level eye is exchanged with the eyewall such that more than half the air of the eye is exchanged in five hours in this case of a sheared hurricane; and 4) that one-fifth of the mass in the eyewall at a height of 5 km has an origin in the mid- to upper-level environment where thet(sub e) is much less than in the eyewall, which ventilates the ensemble average eyewall theta(sub e) by about 1 K. Implications of these findings to the problem of hurricane intensity forecasting are discussed

    The International Surface Pressure Databank version 2

    Get PDF
    The International Surface Pressure Databank (ISPD) is the world's largest collection of global surface and sea-level pressure observations. It was developed by extracting observations from established international archives, through international cooperation with data recovery facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative, and directly by contributing universities, organizations, and countries. The dataset period is currently 1768–2012 and consists of three data components: observations from land stations, marine observing systems, and tropical cyclone best track pressure reports. Version 2 of the ISPD (ISPDv2) was created to be observational input for the Twentieth Century Reanalysis Project (20CR) and contains the quality control and assimilation feedback metadata from the 20CR. Since then, it has been used for various general climate and weather studies, and an updated version 3 (ISPDv3) has been used in the ERA-20C reanalysis in connection with the European Reanalysis of Global Climate Observations project (ERA-CLIM). The focus of this paper is on the ISPDv2 and the inclusion of the 20CR feedback metadata. The Research Data Archive at the National Center for Atmospheric Research provides data collection and access for the ISPDv2, and will provide access to future versions

    Quiet-Sun imaging asymmetries in NaI D1 compared with other strong Fraunhofer lines

    Full text link
    Imaging spectroscopy of the solar atmosphere using the NaI D1 line yields marked asymmetry between the blue and red line wings: sampling a quiet-Sun area in the blue wing displays reversed granulation, whereas sampling in the red wing displays normal granulation. The MgI b2 line of comparable strength does not show this asymmetry, nor does the stronger CaII 8542 line. We demonstrate the phenomenon with near-simultaneous spectral images in NaI D1, MgI b2, and CaII 8542 from the Swedish 1-m Solar Telescope. We then explain it with line-formation insights from classical 1D modeling and with a 3D magnetohydrodynamical simulation combined with NLTE spectral line synthesis that permits detailed comparison with the observations in a common format. The cause of the imaging asymmetry is the combination of correlations between intensity and Dopplershift modulation in granular overshoot and the sensitivity to these of the steep profile flanks of the NaI D1 line. The MgI b2 line has similar core formation but much wider wings due to larger opacity buildup and damping in the photosphere. Both lines obtain marked core asymmetry from photospheric shocks in or near strong magnetic concentrations, less from higher-up internetwork shocks that produce similar asymmetry in the spatially averaged CaII 8542 profile.Comment: Accepted by Astron & Astrophys. In each in-text citation the year links to the corresponding ADS abstract pag

    The frequency of missed test results and associated treatment delays in a highly computerized health system

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>Diagnostic errors associated with the failure to follow up on abnormal diagnostic studies ("missed results") are a potential cause of treatment delay and a threat to patient safety. Few data exist concerning the frequency of missed results and associated treatment delays within the Veterans Health Administration (VA).</p> <p>Objective:</p> <p>The primary objective of the current study was to assess the frequency of missed results and resulting treatment delays encountered by primary care providers in VA clinics.</p> <p>Methods:</p> <p>An anonymous on-line survey of primary care providers was conducted as part of the health systems ongoing quality improvement programs. We collected information from providers concerning their clinical effort (e.g., number of clinic sessions, number of patient visits per session), number of patients with missed abnormal test results, and the number and types of treatment delays providers encountered during the two week period prior to administration of our survey.</p> <p>Results:</p> <p>The survey was completed by 106 out of 198 providers (54 percent response rate). Respondents saw and average of 86 patients per 2 week period. Providers encountered 64 patients with missed results during the two week period leading up to the study and 52 patients with treatment delays. The most common missed results included imaging studies (29 percent), clinical laboratory (22 percent), anatomic pathology (9 percent), and other (40 percent). The most common diagnostic delays were cancer (34 percent), endocrine problems (26 percent), cardiac problems (16 percent), and others (24 percent).</p> <p>Conclusion:</p> <p>Missed results leading to clinically important treatment delays are an important and likely underappreciated source of diagnostic error.</p

    NGC6240: Merger-Induced Star Formation & Gas Dynamics

    Full text link
    We present spatially resolved integral field spectroscopic K-band data at a resolution of 0.13" (60pc) and interferometric CO(2-1) line observations of the prototypical merging system NGC6240. Despite the clear rotational signature, the stellar kinematics in the two nuclei are dominated by dispersion. We use Jeans modelling to derive the masses and the mass-to-light ratios of the nuclei. Combining the luminosities with the spatially resolved Br-gamma equivalent width shows that only 1/3 of the K-band continuum from the nuclei is associated with the most recent star forming episode; and that less than 30% of the system's bolometric luminosity and only 9% of its stellar mass is due to this starburst. The star formation properties, calculated from typical merger star formation histories, demonstrate the impact of different assumptions about the star formation history. The properties of the nuclei, and the existence of a prominent old stellar population, indicate that the nuclei are remnants of the progenitor galaxies' bulges.Comment: 18 pages, 14 figures. Accepted for publication in A&

    Australian higher education institutions transforming the future of teaching and learning through 3d virtual worlds

    Get PDF
    What are educators motivations for using virtual worlds with their students? Are they using them to support the teaching of professions and if this is the case, do they introduce virtual worlds into the curriculum to develop and/or expand students' professional learning networks? Are they using virtual worlds to transform their teaching and learning? In recognition of the exciting opportunities that virtual worlds present for higher education, the DEHub Virtual Worlds Working Group was formed. It is made up of Australian university academics who are investigating the role that virtual worlds will play in the future of education and actively implementing the technology within their own teaching practice and curricula. This paper presents a typology for teaching and learning in 3D virtual worlds and applies the typology to a series of case studies based on the ways in which academics and their institutions are exploiting the power of virtual worlds for diverse purposes ranging from business scenarios and virtual excursions to role-play, experimentation and language development. The case studies offer insight into the ways in which institutions are transforming their teaching for an unknown future through innovative teaching and learning in virtual worlds. The paper demonstrates how virtual worlds enable low cost alternatives to existing pedagogies as well as creating opportunities for rich, immersive and authentic activities that would otherwise not be feasible or maybe not even be possible. Through the use of virtual worlds, teaching and learning can be transformed to cater for an unknown future. © 2010 Sue Gregory, Mark J.W. Lee, Allan Ellis, Brent Gregory, Denise Wood, Mathew Hillier, Matthew Campbell, Jenny Grenfell, Steven Pace, Helen Farley, Angela Thomas, Andrew Cram, Suku Sinnappan, Kerrie Smith, Lyn Hay, Shannon Kennedy-Clark, Ian Warren, Scott Grant, David Craven, Heinz Dreher, Carol Matthews, Deborah Murdoch & Lindy McKeown. © 2010 Sue Gregory, Mark J.W. Lee, Allan Ellis, Brent Gregory, Denise Wood, Mathew Hillier, Matthew Campbell, Jenny Grenfell, Steven Pace, Helen Farley, Angela Thomas, Andrew Cram, Suku Sinnappan, Kerrie Smith, Lyn Hay, Shannon Kennedy-Clark, Ian Warren, Scott Grant, David Craven, Heinz Dreher, Carol Matthews, Deborah Murdoch & Lindy McKeown

    Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L.

    Get PDF
    Because it has a high demand for sulphur (S), oilseed rape is particularly sensitive to S limitation. However, the physiological effects of S limitation remain unclear, especially during the rosette stage. For this reason a study was conducted to determine the effects of mineral S limitation on nitrogen (N) and S uptake and remobilization during vegetative growth of oilseed rape at both the whole-plant and leaf rank level for plants grown during 35 d with 300 μM 34SO42– (control plants; +S) or with 15 μM 34SO42– (S-limited plants; –S). The results highlight that S-limited plants showed no significant differences either in whole-plant and leaf biomas or in N uptake, when compared with control plants. However, total S and 34S (i.e. deriving from S uptake) contents were greatly reduced for the whole plant and leaf after 35 d, and a greater redistribution of endogenous S from leaves to the benefit of roots was observed. The relative expression of tonoplast and plasmalemma sulphate transporters was also strongly induced in the roots. In conclusion, although S-limited plants had 20 times less mineral S than control plants, their development remained surprisingly unchanged. During S limitation, oilseed rape is able to recycle endogenous S compounds (mostly sulphate) from leaves to roots. However, this physiological adaptation may be effective only over a short time scale (i.e. vegetative growth)

    The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    Get PDF
    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase-difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upwards. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects

    How are Australian higher education institutions contributing to change through innovative teaching and learning in virtual worlds?

    Get PDF
    Over the past decade, teaching and learning in virtual worlds has been at the forefront of many higher education institutions around the world. The DEHub Virtual Worlds Working Group (VWWG) consisting of Australian and New Zealand higher education academics was formed in 2009. These educators are investigating the role that virtual worlds play in the future of education and actively changing the direction of their own teaching practice and curricula. 47 academics reporting on 28 Australian higher education institutions present an overview of how they have changed directions through the effective use of virtual worlds for diverse teaching and learning activities such as business scenarios and virtual excursions, role-play simulations, experimentation and language development. The case studies offer insights into the ways in which institutions are continuing to change directions in their teaching to meet changing demands for innovative teaching, learning and research in virtual worlds. This paper highlights the ways in which the authors are using virtual worlds to create opportunities for rich, immersive and authentic activities that would be difficult or not possible to achieve through more traditional approaches. © 2011 Brent Gregory, Sue Gregory, Denise Wood, Yvonne Masters, Mathew Hillier, Frederick Stokes-Thompson, Anton Bogdanovych, Des Butler, Lyn Hay, Jay Jay Jegathesan, Kim Flintoff, Stefan Schutt,Dale Linegar, Robyn Alderton, Andrew Cram, Ieva Stupans, Lindy McKeown Orwin, Grant Meredith, Debbie McCormick, Francesca Collins, Jenny Grenfell, Jason Zagami, Allan Ellis, Lisa Jacka, Angela Thomas, Helen Farley, Nona Muldoon, Ali Abbas, Suku Sinnappan, Katrina Neville, Ian Burnett, Ashley Aitken, Simeon Simoff, Sheila Scutter, Xiangyu Wang, Kay Souter, David Ellis, Mandy Salomon, Greg Wadley, Michael Jacobson, Anne Newstead, Gary Hayes, Scott Grant, Alyona Yusupova
    corecore