92 research outputs found

    The plaza and palace complex.

    Get PDF
    234 p. : ill., maps ; 26 cm.This volume represents the first in a series of publications detailing the archaeological research conducted by Craig Morris and his colleagues at Huánuco Pampa, an Inka provincial administrative center located in highland Peru. The site offers a unique opportunity to study Inka urbanism, and the present publication discusses the form and function of Inka cities, as well as the extent to which the Andean urban form could be coopted by the Spanish empire after the conquest of the Inkas. Open spaces and special state compounds were key components of Inka administrative centers, and attention is given to the archaeological remains found in and around the central plaza at Huánuco Pampa. Buildings on the plaza were probably used by local provincial groups for festive and ceremonial activities presided over by Inka officials. While the central plaza provided space for a broad provincial constituency, a series of smaller open spaces in the Zone IIB administrative palace offered more exclusive areas for encounters between provincial and Inka elites. After discussing Inka palace compounds, the archaeological focus turns to excavations inside structures and in exterior spaces in the palace, revealing patterns of access and degrees of status in the transit from accessible administrative spaces to restricted residential ones. An appendix to the volume provides a detailed description of the analysis of ceramic artifacts from excavations at Huánuco Pampa. CONTENTS: Introduction : Reconstructing Inka urbanism and provincial administration -- Interdisciplinary perspectives on the Inka city -- Inka central plazas -- The colonial occupation of the central plaza at Huánuco Pampa -- Form and function of Inka palace complexes -- An administrative palace at Huánuco Pampa -- Building summaries from Zone IIB-1 -- Building summaries from Zone IIB-2a -- Building summaries from Zone IIB-2b and IIB-2c -- Building summaries from Zone IIB-3 -- Building summaries from Zone IIB-4 -- Comparing plaza spaces at Huánuco Pampa -- References -- Appendix : The ceramics of Huánuco Pampa

    The Luminosity and Mass Functions of Low-Mass Stars in the Galactic Disk: I. The Calibration Region

    Full text link
    We present measurements of the luminosity and mass functions of low-mass stars constructed from a catalog of matched Sloan Digital Sky Survey (SDSS) and 2 Micron All Sky Survey (2MASS) detections. This photometric catalog contains more than 25,000 matched SDSS and 2MASS point sources spanning ~30 square degrees on the sky. We have obtained follow-up spectroscopy, complete to J=16, of more than 500 low mass dwarf candidates within a 1 square degree sub-sample, and thousands of additional dwarf candidates in the remaining 29 square degrees. This spectroscopic sample verifies that the photometric sample is complete, uncontaminated, and unbiased at the 99% level globally, and at the 95% level in each color range. We use this sample to derive the luminosity and mass functions of low-mass stars over nearly a decade in mass (0.7 M_sun > M_* > 0.1 M_sun). We find that the logarithmically binned mass function is best fit with an M_c=0.29 log-normal distribution, with a 90% confidence interval of M_c=0.20--0.50. These 90% confidence intervals correspond to linearly binned mass functions peaking between 0.27 M_sun and 0.12 M_sun, where the best fit MF turns over at 0.17 M_sun. A power law fit to the entire mass range sampled here, however, returns a best fit of alpha=1.1 (where the Salpeter slope is alpha = 2.35). These results agree well with most previous investigations, though differences in the analytic formalisms adopted to describe those mass functions can give the false impression of disagreement. Given the richness of modern-day astronomical datasets, we are entering the regime whereby stronger conclusions can be drawn by comparing the actual datapoints measured in different mass functions, rather than the results of analytic analyses that impose structure on the data a priori. (abridged)Comment: Accepted for publication in the Astronomical Journal. 21 pages, emulateapj format, 12 figures. Figures 1, 4, 11 and 12 degraded for astroph; full resolution version available for download at http://www.cfa.harvard.edu/~kcovey

    The Milky Way Tomography With SDSS. III. Stellar Kinematics

    Get PDF
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator

    Sloan Digital Sky Survey Imaging of Low Galactic Latitude Fields: Technical Summary and Data Release

    Full text link
    The Sloan Digital Sky Survey (SDSS) mosaic camera and telescope have obtained five-band optical-wavelength imaging near the Galactic plane outside of the nominal survey boundaries. These additional data were obtained during commissioning and subsequent testing of the SDSS observing system, and they provide unique wide-area imaging data in regions of high obscuration and star formation, including numerous young stellar objects, Herbig-Haro objects and young star clusters. Because these data are outside the Survey regions in the Galactic caps, they are not part of the standard SDSS data releases. This paper presents imaging data for 832 square degrees of sky (including repeats), in the star-forming regions of Orion, Taurus, and Cygnus. About 470 square degrees are now released to the public, with the remainder to follow at the time of SDSS Data Release 4. The public data in Orion include the star-forming region NGC 2068/NGC 2071/HH24 and a large part of Barnard's loop.Comment: 31 pages, 9 figures (3 missing to save space), accepted by AJ, in press, see http://photo.astro.princeton.edu/oriondatarelease for data and paper with all figure

    The Milky Way Tomography with SDSS: III. Stellar Kinematics

    Full text link
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r<20 and proper-motion measurements derived from SDSS and POSS astrometry, including ~170,000 stars with radial-velocity measurements from the SDSS spectroscopic survey. Distances to stars are determined using a photometric parallax relation, covering a distance range from ~100 pc to 10 kpc over a quarter of the sky at high Galactic latitudes (|b|>20 degrees). We find that in the region defined by 1 kpc <Z< 5 kpc and 3 kpc <R< 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z<1Z<1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (<100 pc), we detect a multimodal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and LSST.Comment: 90 pages, 26 figures, submitted to Ap

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Can asthma control be improved by understanding the patient's perspective?

    Get PDF
    Clinical trials show that asthma can be controlled in the majority of patients, but poorly controlled asthma still imposes a considerable burden. The level of asthma control achieved reflects the behaviour of both healthcare professionals and patients. A key challenge for healthcare professionals is to help patients to engage in self-management behaviours with optimal adherence to appropriate treatment. These issues are particularly relevant in primary care, where most asthma is managed. An international panel of experts invited by the International Primary Care Respiratory Group considered the evidence and discussed the implications for primary care practice

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Explaining the rise of moralizing religions : a test of competing hypotheses using the Seshat Databank

    Get PDF
    The causes, consequences, and timing of the rise of moralizing religions in world history have been the focus of intense debate. Progress has been limited by the availability of quantitative data to test competing theories, by divergent ideas regarding both predictor and outcomes variables, and by differences of opinion over methodology. To address all these problems, we utilize Seshat: Global History Databank, a large storehouse of information designed to test theories concerning the evolutionary drivers of social complexity. In addition to the Big Gods hypothesis, which proposes that moralizing religion contributed to the success of increasingly large-scale complex societies, we consider the role of warfare, animal husbandry, and agricultural productivity in the rise of moralizing religions. Using a broad range of new measures of belief in moralizing supernatural punishment, we find strong support for previous research showing that such beliefs did not drive the rise of social complexity. By contrast, our analyses indicate that intergroup warfare, supported by resource availability, played a major role in the evolution of both social complexity and moralizing religions. Thus, the correlation between social complexity and moralizing religion seems to result from shared evolutionary drivers, rather than from direct causal relationships between these two variables
    corecore