299 research outputs found

    Higher-order factors of personality: Do they exist?

    Get PDF
    Scales that measure the Big Five personality factors are often substantially intercorrelated. These correlations are sometimes interpreted as implying the existence of two higher order factors of personality. The authors show that correlations between measures of broad personality factors do not necessarily imply the existence of higher order factors and might instead be due to variables that represent same-signed blends of orthogonal factors. Therefore, the hypotheses of higher order factors and blended variables can only be tested with data on lower level personality variables that define the personality factors. The authors compared the higher order factor model and the blended variable model in three participant samples using the Big Five Aspect Scales, and found better fit for the latter model. In other analyses using the HEXACO Personality Inventory, they identified mutually uncorrelated markers of six personality factors. The authors conclude that correlations between personality factor scales can be explained without postulating any higher order dimensions of personality. © 2009 by the Society for Personality and Social Psychology, Inc

    The Five Factor Model of personality and evaluation of drug consumption risk

    Full text link
    The problem of evaluating an individual's risk of drug consumption and misuse is highly important. An online survey methodology was employed to collect data including Big Five personality traits (NEO-FFI-R), impulsivity (BIS-11), sensation seeking (ImpSS), and demographic information. The data set contained information on the consumption of 18 central nervous system psychoactive drugs. Correlation analysis demonstrated the existence of groups of drugs with strongly correlated consumption patterns. Three correlation pleiades were identified, named by the central drug in the pleiade: ecstasy, heroin, and benzodiazepines pleiades. An exhaustive search was performed to select the most effective subset of input features and data mining methods to classify users and non-users for each drug and pleiad. A number of classification methods were employed (decision tree, random forest, kk-nearest neighbors, linear discriminant analysis, Gaussian mixture, probability density function estimation, logistic regression and na{\"i}ve Bayes) and the most effective classifier was selected for each drug. The quality of classification was surprisingly high with sensitivity and specificity (evaluated by leave-one-out cross-validation) being greater than 70\% for almost all classification tasks. The best results with sensitivity and specificity being greater than 75\% were achieved for cannabis, crack, ecstasy, legal highs, LSD, and volatile substance abuse (VSA).Comment: Significantly extended report with 67 pages, 27 tables, 21 figure

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Identification techniques for highly boosted W bosons that decay into hadrons

    Get PDF

    Search for vectorlike charge 2/3 T quarks in proton-proton collisions at root(s)=8 TeV

    Get PDF
    Peer reviewe

    Measurement of the t-channel single-top-quark production cross section and of the |Vtb| CKM matrix element in pp collisions at SQR = 8 TeV

    Get PDF
    Measurements are presented of the t -channel single-top-quark production cross section in proton-proton collisions at s√ = 8 TeV. The results are based on a data sample corresponding to an integrated luminosity of 19.7 fb −1 recorded with the CMS detector at the LHC. The cross section is measured inclusively, as well as separately for top (t) and antitop (t¯) , in final states with a muon or an electron. The measured inclusive t -channel cross section is σ t -ch. = 83 . 6 ± 2 . 3 (stat.) ± 7 . 4 (syst.) pb. The single t and t¯ cross sections are measured to be σ t -ch. ( t ) = 53 . 8 ± 1 . 5 (stat.) ± 4 . 4 (syst.) pb and σ t -ch. (t¯) = 27 . 6 ± 1 . 3 (stat.) ± 3 . 7 (syst.) pb, respectively. The measured ratio of cross sections is R t -ch. = σ t -ch. (t) /σ t -ch. (t¯) = 1 . 95 ± 0 . 10 (stat.) ± 0 . 19 (syst.), in agreement with the standard model prediction. The modulus of the Cabibbo-Kobayashi-Maskawa matrix element V tb is extracted and, in combination with a previous CMS result at s√ = 7 TeV, a value | V tb | = 0 . 998 ± 0 . 038 (exp.) ± 0 . 016 (theo.) is obtained

    Search for new phenomena in monophoton final states in proton-proton collisions at √s=TeV

    Get PDF
    Results are presented from a search for new physics in final states containing a photon and missing transverse momentum. The data correspond to an integrated luminosity of 19.6 fb−1 collected in proton–proton collisions at s=8 TeV with the CMS experiment at the LHC. No deviation from the standard model predictions is observed for these final states. New, improved limits are set on dark matter production and on parameters of models with large extra dimensions. In particular, the first limits from the LHC on branon production are found and significantly extend previous limits from LEP and the Tevatron. An upper limit of 14.0 fb on the cross section is set at the 95% confidence level for events with a monophoton final state with photon transverse momentum greater than 145 GeV and missing transverse momentum greater than 140 GeV

    Observation of a new Xi(b) baryon

    Get PDF
    The first observation of a new b baryon via its strong decay into Xi(b)^- pi^+ (plus charge conjugates) is reported. The measurement uses a data sample of pp collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 5.3 inverse femtobarns. The known Xi(b)^- baryon is reconstructed via the decay chain Xi(b)^- to J/psi Xi^- to mu^+ mu^- Lambda^0 pi^-, with Lambda^0 to p pi^-. A peak is observed in the distribution of the difference between the mass of the Xi(b)^- pi^+ system and the sum of the masses of the Xi(b)^- and pi^+, with a significance exceeding five standard deviations. The mass difference of the peak is 14.84 +/- 0.74 (stat.) +/- 0.28 (syst.) MeV. The new state most likely corresponds to the J^P=3/2^+ companion of the Xi(b).Comment: Submitted to Physical Review Letter
    corecore