53 research outputs found

    Lutzomyia longipalpis Saliva or Salivary Protein LJM19 Protects against Leishmania braziliensis and the Saliva of Its Vector, Lutzomyia intermedia

    Get PDF
    Leishmaniasis, caused by parasitic protozoa Leishmania, is transmitted by bites of female sand flies that, during blood-feeding, inject humans with parasites and saliva. Sand fly saliva has been investigated as a potential vaccine candidate. It was previously shown that immunization with Lutzomyia longipalpis saliva or salivary proteins protects against cutaneous and visceral leishmaniasis. In the present study, we evaluated if immunization with Lu. longipalpis saliva or DNA plasmid coding for a specific sand fly salivary protein (LJM19) can protect hamsters against L. braziliensis plus another sand fly saliva. Immunization with saliva or LJM19 DNA plasmid induced a mononuclear cell infiltrate which can be a marker of protection. The immune response induced by immunization with these insect molecules was able to protect animals against L. braziliensis infection as shown by the significant reduction in lesion size, parasite load in the ear and draining lymph node. These data show the important role of immune response against sand fly saliva components, suggesting the possibility to develop vaccines using a single component of saliva against Leishmania transmitted by different vectors

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5)

    Get PDF

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Rhinitis associated with asthma is distinct from rhinitis alone: TARIA‐MeDALL hypothesis

    Get PDF
    Asthma, rhinitis, and atopic dermatitis (AD) are interrelated clinical phenotypes that partly overlap in the human interactome. The concept of “one-airway-one-disease,” coined over 20 years ago, is a simplistic approach of the links between upper- and lower-airway allergic diseases. With new data, it is time to reassess the concept. This article reviews (i) the clinical observations that led to Allergic Rhinitis and its Impact on Asthma (ARIA), (ii) new insights into polysensitization and multimorbidity, (iii) advances in mHealth for novel phenotype definitions, (iv) confirmation in canonical epidemiologic studies, (v) genomic findings, (vi) treatment approaches, and (vii) novel concepts on the onset of rhinitis and multimorbidity. One recent concept, bringing together upper- and lower-airway allergic diseases with skin, gut, and neuropsychiatric multimorbidities, is the “Epithelial Barrier Hypothesis.” This review determined that the “one-airway-one-disease” concept does not always hold true and that several phenotypes of disease can be defined. These phenotypes include an extreme “allergic” (asthma) phenotype combining asthma, rhinitis, and conjunctivitis.info:eu-repo/semantics/publishedVersio
    corecore