813 research outputs found

    DeterminaciĂłn bacteriolĂłgica de la calidad del agua para consumo humano obtenida de filtros ubicados dentro del campus central de la Universidad de San Carlos de Guatemala

    Get PDF
    El agua apta para el consumo humano o lo que se conoce como “agua potable”, es aquella que según sus características organolépticas, físicas, químicas y bacteriológicas, no representa un riesgo para la salud del consumidor. El presente estudio se basó en la determinación de la calidad del agua extraída de 21 filtros de ozono y de capas de las Facultades de Agronomía, Arquitectura, Ciencias Químicas y Farmacia, Económicas, Ingeniería y Odontología; Escuela de Historia y de Trabajo Social; Gimnasio Universitario y del Centro de Estudios del Mar (CEMA); ubicados dentro del campus central de la Universidad de San Carlos de Guatemala con el objetivo de determinar sí el agua extraída de los mismos es apta para el consumo humano. Se colectaron y evaluaron las muestras para determinar la cantidad de coliformes totales y fecales por el método del Numero Más Probable (NMP) así como evidenciar la presencia de Escherichia coli (E. coli) según criterios establecidos por la norma Comisión Guatemalteca de Normas, Norma Técnica Guatemalteca [COGUANOR NTG 29001], 2010. Bacteriological determination of the quality of drinking water obtained from filters located in the central campus of the University of San Carlos of Guatemala. Abstract “Purified water” is described as having organoleptic, physical, chemical and microbiological characteristics that does not represent any risk for human health. The present study was based in the determination of water quality from 21 ozone and sedimentation water filters form the Faculties of Agronomy, Architecture, Chemical Sciences and Pharmacy, Economic Sciences, Enginery and Odontology; The School of History, Social Work; The University Gym and The Center of Sea Studies (CEMA) (Spanish acronyms); located in the central campus of Universidad de San Carlos de Guatemala. The main purpose of the study to determine if the water samples extracted from the filters a qualified for human intake. This evaluation is based on the quantity of total and fecal coliforms according to the most probable number method (MPN) and the presence of Escherichia coli (E. coli), both evaluated under [COGUANOR NTG 29001],2010 standards

    Characterization of Nonjunctional Hemichannels in Caterpillar Cells

    Get PDF
    Recent studies have demonstrated that hemichannels, which form gap junctions when paired from apposing cells, may serve additional roles when unpaired including cell adhesion and paracrine communication. Hemichannels in mammals are formed by connexins or pannexins, while in insects they are formed by pannexin homologues termed innexins. The formation of functional gap junctions by insect innexins has been established, although their ability to form functional nonjunctional hemichannels has not been reported. Here the characteristics of nonjunctional hemichannels were examined in three lepidopteran cell types, two cell lines (High Five and Sf9) and explanted hemocytes from Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Selective fluorescent dye uptake by hemichannels was observed in a significant minority of cells, using fluorescence microscopy and flow cytometry. Carbenoxelone, an inhibitor of mammalian junctions, disrupted dye uptake, while flufenamic acid and mefloquine did not. The presence of Ca2+ and Mg2+ in the media increased hemichannel activity. Additionally, lipopolysaccharide, a stimulator of immune activity in lepidopterans, decreased dye uptake. These results demonstrate for the first time the activity of nonjunctional hemichannels in insect cells, as well as pharmacological tools to manipulate them. These results will facilitate the further examination of the role of innexins and nonjunctional hemichannels in insect cell biology, including paracrine signaling, and comparative studies of mammalian pannexins and insect innexins

    Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines

    Get PDF
    The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    Equine Protozoal Myeloencephalitis: An Updated Consensus Statement with a Focus on Parasite Biology, Diagnosis, Treatment, and Prevention

    Get PDF
    Equine protozoal myeloencephalitis (EPM) remains an important neurologic disease of horses. There are no pathognomonic clinical signs for the disease. Affected horses can have focal or multifocal central nervous system (CNS) disease. EPM can be difficult to diagnose antemortem. It is caused by either of 2 parasites, Sarcocystis neurona and Neospora hughesi, with much less known about N. hughesi. Although risk factors such as transport stress and breed and age correlations have been identified, biologic factors such as genetic predispositions of individual animals, and parasite-specific factors such as strain differences in virulence, remain largely undetermined. This consensus statement update presents current published knowledge of the parasite biology, host immune response, disease pathogenesis, epidemiology, and risk factors. Importantly, the statement provides recommendations for EPM diagnosis, treatment, and prevention

    Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2)

    Get PDF
    Aims/hypothesis Rapamycin (sirolimus) is one of the primary immunosuppressants for islet transplantation. Yet there is evidence that the long-term treatment of islet-transplant patients with rapamycin may be responsible for subsequent loss of islet graft function and viability. Therefore, the primary objective of this study was to elucidate the molecular mechanism of rapamycin toxicity in beta cells. Methods Experiments were performed on isolated rat and human islets of Langerhans and MIN6 cells. The effects of rapamycin and the roles of mammalian target of rapamycin complex 2 (mTORC2)/protein kinase B (PKB) on beta cell signalling, function and viability were investigated using cell viability assays, insulin ELISA assays, kinase assays, western blotting, pharmacological inhibitors, small interfering (si)RNA and through the overproduction of a constitutively active mutant of PKB

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore