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Abstract

The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal
cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel
and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational
pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-
fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising
(pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a
significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events
(adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a
significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17;
13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant
associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early
adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a
positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered
to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar
individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of
these markers.
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Introduction

Folate-dependent one-carbon metabolism is a target for drug
groups that are widely used in the treatment of cancer and
inflammatory diseases. Two of the drugs, 5-fluorouracil (5-FU)
and capecitabine, are central to the medical management of
colorectal cancer in both advanced and adjuvant settings; they
are used as monotherapies or in combination with other
chemotherapeutic and biological agents. Both folate
metabolism and the catabolism of 5-FU and capecitabine
depend on a number of enzymes that are functionally
polymorphic [1]. 5-FU is a fluoropyrimidine that has been used
as a chemotherapeutic agent for more than five decades.
Inhibition of thymidylate synthase (TYMS) is an important
mechanism of action for 5-FU, which leads to inhibition of DNA

synthesis and DNA repair. This cytotoxicity is partly dependent
on the formation of a ternary complex between TYMS, the
deoxyribonucleoside derived from 5-FU and 5-methyl-
tetrahydrofolate (THF). This can be enhanced by the expansion
of reduced folate pools, which can be achieved
pharmacologically because 5-FU regimes include folinic acid
(Leucovorin), a 5-formyl derivative of THF [2].

The fluoropyrimidine, capecitabine (a pro-drug that is
preferentially converted to 5-FU in tumour cells), has been
designed for oral administration and to be more specific than 5-
FU, thus leading to potential differences in the safety profile
[2-5].

The use of 5-FU/leucovorin in randomized controlled trials of
adjuvant chemotherapy for colorectal cancer has been shown
to improve both disease-free and overall survival as compared
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to surgery alone [6,7]. Subsequently, trial participants receiving
5-FU/leucovorin combined with oxaliplatin were found to have
significantly improved progression-free survival of 9.0 months
compared with 6.2 months in those receiving 5-FU/leucovorin
alone (p<0.001) [8]. However, neutropenia and diarrhoea were
important adverse effects noted in this trial. The need to
manage toxicity is important because unintended effects may
result in the patient having to receive a lower dose or shorter
course of chemotherapy, with adverse consequences on the
benefit/harm balance. Hence, there are potential clinical
advantages from the development of predictive markers to
guide clinicians in selecting individuals who are most likely to
benefit (or least likely to be harmed) from a particular drug
regimen. If individuals with high susceptibility for adverse
effects could be identified before treatment, strategies to
reduce the risk such as using alternative chemotherapy
regimens (based on different agents or dose modification) and
closer monitoring with greater use of supportive therapeutics,
could be applied. Many studies have explored the predictive
value of genotyping for beneficial response to chemotherapy
and the likelihood of chemotherapy related adverse events
[9-20] and heterogeneous conclusions were drawn about the
association of individual markers with treatment outcomes. A
recent genome-wide association study identified one variant
that had not been previously implicated in 5-FU
pharmacokinetic or pharmacodynamic pathways and failed to
identify association signals in previously identified markers or
their imputed proxys [21].

We have previously reported a meta-analysis on the clinical
impact of TYMS and methylenetetrahydrofolate reductase
(MTHFR) [22]. Data were synthesized from more than 2000
patients for the most commonly studied markers TYMS 5’ UTR
repeat polymorphism (rs45445694) and MTHFR 677 C>T
(rs1801133). We found a statistically significant association
between clinical response and the TYMS genotype associated
with low protein expression only; however, the effect size is
small (RR = 1.36 [1.11, 1.65] and RR = 2.04 [1.42, 2.95] for
benefit and adverse events respectively) and therefore
suggests limited clinical utility for this marker. Some SNPs of
the DPYD gene have been strongly associated with severe
toxicity; an exon-skipping mutation in intron 14 (rs3918290) has
been shown to have a positive predictive value ranging from 46
% [23] to 100 % [17,24]. The benefit/harm ratio is likely to
depend on a complex polygenic model where individual
genotypes have only a small role. Analysis of multiple
polymorphisms simultaneously will allow us to consider
additive, synergistic and compensating variants of folate
metabolism and anti-folate catabolism that may have clinical
utility as predictive genetic signatures; but data from large
cohorts will be needed. In this study we present individualised
pharmacogenetic patient data that could potentially be pooled
in meta-analyses of gene interactions. Our objectives were to
test the clinical validity of previously identified markers of
adverse events in a broad clinical setting; and to identify any
novel associations between adverse events and candidate
variants of proximal enzymes in the pharmacodynamic and
pharmacokinetic pathways.

Materials and Methods

Study Design
This is an observational pharmacogenetic cohort study of

colorectal cancer patients treated with 5-FU or capecitabine.

Participants, Setting and Treatment Regimens
Peripheral blood samples were collected from two hundred

and fifty-four CRC patients treated within the Oncology
department of the Norfolk and Norwich University Hospital in
Norfolk, England between 2008 and 2011. The Central Office
for Research Ethics Committees approved the study protocol
(REC reference 07/H0310/134) and written informed consent
was obtained from all participants.

The patients, who had a World Health Organisation
performance status of between 0 and 2, were treated in neo-
adjuvant, adjuvant and palliative settings with either
intravenous 5-FU or capecitabine as monotherapy, or
combined with other agents as dual therapy. The second
chemotherapy agents were typically irinotecan (FOLFIRI,
CAPIRI regimens) or the platinum salt oxaliplatin (FOLFOX,
CAPOX regimens) [25]. Toxicities encountered with all agents
used were assessed according to the Common Terminology
Criteria for Adverse Events (CTCAE) Version 4.0. The standard
departmental protocol was followed for dose modification and
treatment withdrawal.

Baseline Characteristics
The age, sex, laboratory data for bone marrow and liver

function, plasma levels of carcinoembryonic antigen (CEA) and
disease stage were recorded for each participant at the start of
the treatment regime. The histological classification and grade
of the primary tumour were also recorded.

Phenotypes
Relevant clinical data about adverse events were collected

from patient records and laboratory charts for 12 weeks from
the start of the treatment regime. Adverse events were graded
in accordance with the CTCAE version 4.0 for gastrointestinal
symptoms, mucositis/stomatitis, palmar-plantar syndrome,
paraesthesia and cardiac toxicity, neutropenia, anaemia,
thrombocytopenia and abnormal liver function tests.

1. Any delays or reductions in the administration of
fluoropyrimidines due to adverse events were recorded as
primary outcomes for the subsequent analyses.

2. Grade 3, 4 or 5 adverse events were analysed as
secondary outcomes. Toxicity classified as paraesthesia was
not included in the statistical analysis of patients treated with
combination chemotherapies because the symptom is largely
attributable to oxaliplatin therapy. Abnormal liver function tests
were not included in the analyses for participants with liver
metastases.
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Genes, Genetic Variants and Genotype Analysis and
Analytic Validity

We used or developed allelic discrimination assays for the
polymorphic forms of MTHFR, TYMS, DHFR, MTHFD, SHMT,
DPYD, UMPS, CDA and TYMP described in Table 1. We
identified the genetic variants of interest through the systematic
extraction of data for polymorphisms of the genes described on
the NCBI and SNP 500 databases or in publications, and their
stratification was based on published data or sequence-based
predictions about their functional impact [17,18,26-34].

DNA was extracted from whole blood using standard
methods and sub-aliquoted onto 96 well plates at a
concentration of approximately 100 ng µl-1. All subsequent
reactions were also performed in 96 well plates and 8 channel
automatic pipettes were used for all liquid transfers. Fifteen of
the PCR reactions comprised 100 ng DNA, 200 nmol L-1 of
each primer and 1 x PCR Thermo Start Mastermix (ABgene
UK, Epsom, England) in a 25 µl volume. The PCR conditions
for each assay varied according to cycle number and annealing
temperature but in each case an initial denaturation was
performed at 95 °C for 5 minutes and the PCR reaction was
linked to a final extension step of 10 minutes at 70 °C.

Restriction fragment length polymorphism (RFLP) analysis
was used for 12 of the assays. In each case, 10 µl of PCR
product was digested overnight at 37 °C in a 20 µl reaction
volume. The enzymes used (New England Biolabs, Hitchin,
UK) for each reaction are described in Table 1(a). The PCR
products were electrophoresed on a 1 X Tris/borate/EDTA, 3%
Metaphor agarose (FMC Bioproducts, Lichfield, UK) gel in a
Stretch-wide apparatus (ABgene, Epsom, UK) at 80 V for 50
minutes.

For the SHMT1 assay ‘an Assay by Design’ kit of primers
and Taqman probes were used with Taqman mastermix
(Applied Biosystems, Warrington, UK) and 100 ng of DNA in a
25µl volume. The Applied Biosystems standard minor groove
binding PCR reaction conditions were used; 50 °C for 2
minutes; 95 °C for 10 minute followed by 40 cycles of 60 °C for
1 minute and 92 °C for 15 seconds.

A number of control steps were included in our standard
operating procedures.

1. Genotype-specific and no DNA controls were used.
2. A minimum of 10% of the samples from each batch were

genotyped a second time.
3. The 677C>T and 1298A>C alleles of the MTHFR loci have

been shown to be in linkage disequilibrium because these
variants are very rarely found in cis [33,35,36]. The
c1129-5923C>G intronic SNP of DPYD is tightly linked to
1236G>A, and therefore these SNPs are expected to be found
as a diplotype.

4. We used the exact test of Hardy-Weinberg proportions to
analyse the frequencies of the genotypes detected for each
locus for deviation from Hardy-Weinberg equilibrium (HWE).

Statistical Analysis
The main aim of the study was to assess the association

between individual candidate SNPs and toxicity. The adjusted
test for trend was pre-specified as our method for statistical

analysis but for completeness, and to make our data available
for meta-analysis by others, we also calculated associations
using dominant and recessive models.

For unadjusted results, we calculated odds ratios (ORs) and
95% confidence intervals (CIs) directly between the risk of both
5-FU dose modification and the risk of grade 3, 4 or 5 toxicity
events and each SNP. We took homozygotes for the major
allele as the reference category. We used the score test for
trend of odds. For adjusted results, we used unconditional
logistic regression to estimate the ORs and 95% CIs between
risk of the two outcomes and each SNP, adjusted for age, sex,
previous chemotherapy and treatment regime.

To calculate the adjusted test for trend, we fitted the SNP
result (0, 1 or 2) as a continuous outcome. For completeness,
we also calculated whether alleles increased disease risk
under dominant (1+2 versus 0) and recessive (2 versus 0+1)
models. Where there were small cell counts (expected value <
5) we used Fisher’s exact estimate for the unadjusted results
and we did not calculate the results for the adjusted model. We
analysed the data using Stata version 12 (StataCorp, 2011).
Many tests were carried out so, whilst not formally adjusting for
multiple comparisons, we pre-specified that the results of the
adjusted test for trend should be taken as the main results.

Results

Participants and treatment regimens
254 participants were recruited to the study. One participant

was subsequently excluded who was undergoing combination
chemo-radiotherapy for a squamous cell carcinoma of the
anus.

Patient characteristics are summarised in Table 2. The
median age of the participants was 67 years and the male to
female ratio was 1.34: 1. Most participants (209, 82.60 %) were
undergoing first-line chemotherapy.

Phenotype
109 of the 253 (43.08 %) participants included in the

pharmacogenetic analysis had a dose delay or modification,
and 44 (17.39 %) had a grade 3 or 4 adverse event; or died
from causes (gastrointestinal symptoms, liver failure, cardiac
symptoms and thromboembolic disease) that were considered
unrelated to disease progression within 12 weeks of
commencing their chemotherapy regime. Severe adverse
events were observed more frequently for patients receiving
combination chemotherapy in comparison with those receiving
fluoropyrimidine monotherapy (22 % versus 12 % respectively;
see Table S1).

Genotype Analysis and Analytic Validity
Scoring of Genotypes was 99.5 % successful in the first

round of assays and 100 % successful after any failed samples
and repeats had been re-assayed.

The genotype frequencies are described in Table 1 (b). The
most common minor allele (DHFR) had a frequency of 49 %
and the rarest minor allele (DPYD, rs67376798) had a
frequency of 0.4 %. These frequencies concurred with those
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found on databases for other northern European populations
which is in keeping with our previous observation that 94 % of
the population served by the recruiting hospital are white and
born in England [37].

There were no inconsistencies in the data analysis of the
control markers included with each batch, or with duplicate
analyses, or with observations about linkage disequilibrium. No
significant deviations from HWE were observed.

Table 1. The genetic markers analysed as predictive markers of adverse events and biochemical response to 5FU and
Capecitabine treatment.

1 (a)

Gene
symbol,
locus NCBI SNP I.D; Polymorphism; class of mutation PCR primer pair; and Taqman probes

Enzyme
used for
RFLP
analysis

1 (b) Genotype
Frequency
homozygotes
for major allele/
heterozygotes/
homozygotes
for minor allele

Markers of
Pharmacodynamics

TYMS,
18p11.32

rs45445694; 5’UTR; Tandem repeat
polymorphism (2R/3R)

AAAAGGCGCGCGGAAG and
GCCGGCCACAGGCAT

Not
applicable,
gel analysis

84/116/53

  G>C in 3R alleles of rs45445694; SNP
AAAAGGCGCGCGGAAG and
GCCGGCCACAGGCAT

Hae III 147/89/17

  rs16430; 3’UTR 1494 -6bp/+6bp; In/del
GCAGAACACTTCTTTATTATAGCAACATATAA
and CGATCATGATGTAGAGTGTGGTTATG

Not
applicable,
gel analysis

124/103/26

 
MTHFR,
1p36.3

rs1801133; 677C>T; A222V, Missense
GGGTCAGAAGCATATCAGTCATG and
CACAAAGCGGAAGAATGTGTC

HinfI 110/111/32

  rs1801131; 1298A>C; E429A, Missense
CTACCTGG*AGAGCAAGTCCCCCAA and
GGATGAACCAGGGTCCCC

MboII 117/119/17

 
DHFR,
5q14.1

IVS1+59_60insACCTGGGCGGGACGCGCCA;
19 bp intron 1 in/del

ATGGGACCCAAACGGGC and
CACCCTTCCTGCCAGCG

Not
applicable,
gel analysis

62/135/56

 
MTHFD1,
14q24

rs2236225; 1958G>A; R653Q, Missense
TTCCAATGTCTGCTCCAAATCC and
CCTTCCGATTCCAAATCAATTC

Msp1 81/123/49

 
SHMT1,
17p11.2

rs1979277; 1420C>T; L474F, Missense

GCCCGCTCCTTTAGAAGTCA and
CTCCGGGAGGAGGTTGAGA;

VIC TTCGCCTCTTTCTTC and FAM
TTCGCCTCTCTCTTC

Not
applicable,
Taqman
probes

125/107/21

Markers of
Pharmacokinetics

DPYD,
1p22

rs3918290; IVS14+1 G>A; Exon-skipping SNP in
intron 14

CCTCTGGCCCCATGTATG and
AGCAACTGGCAGATTCTTTAATAAA

HpyCH4IV 250/3/0

  1236G>A; E412E, Synonymous SNP
CTATGCAGTTTGTTCGGACT*GA and
GATGACCACATCGGCTTTCA

DdeI 243/10/0

  rs67376798; 2846A>T; D949V, Missense
TAGAGCAAGTTGTGGCTATGATC*G and
GTCTCATAGCATTCTAATTCCAGCA

TaqαI 251/2/0

  c1129-5923C>G; intronic SNP creates splice site
TTTTATTTCACTCG*GCATCAGCC and
CATTTGACAAATCAGGTTGTCACTT

DdeI 243/10/0

 
UMPS,
3q13

rs1801019; 638G>C; G213A, Missense
TGTGGCAGCGAATCATAC*TG and
GGATCCTGGGCAGCTCT

BsrI 174/73/6

 
CDA,
1p36

rs2072671; 258A>C; K27Q, Missense
GCTCCCA GGAGGT*CAAG and
TTACCTTTGAAGATTCTCCCCT

Hpy188III 113/110/30

 
TYMP,
22q13

rs11479; 1412C>T; S471L, Missense
GCAGGAGGCGCTCGT and
CTGACAAGGTTTCGCGGC

MnlI 207/44/2

  rs112723255; 1393G>A; A465T, Missense
GCAGGAGGCGCTCGT and
CTGACAAGGTTTCGCGGC

HinP1I 234/17/2

1 (a) The table describes the functional impact of each polymorphism and the oligonucleotides and restriction enzymes used in the assays.

1 (b) The distribution of genotypes for each marker is presented for the cohort of 253 colorectal cancer patients included in the pharmacogenetic analysis.
(* - indicates a mismatch with the wild type sequence; introduced to eliminate/create enzyme sites for the assay)
doi: 10.1371/journal.pone.0078053.t001
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Statistical Analysis
The relationships between each SNP and dose modifications

or severe toxicity are presented in Table S2. Odds ratios (ORs)
adjusted for age, sex, previous chemotherapy and treatment
regime are presented. For MTHFR and DPYD SNPs, we have
included an analysis of variants with the same functional
effects as signatures of alternative polymorphisms.

The results of the adjusted test for trend were pre-defined as
our main hypothesis-testing data. But for four loci there were
zero observations of homozygotes for the minor allele, in which
case we used the adjusted dominant model.

We found a significant association between early dose
modifications and severe adverse events (adjusted OR = 2.02
[1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p =
0.013 respectively from the dominant model) and TYMP
(rs11479). There was also a significant association between
these phenotypes and a signature of DPYD mutations
(Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR =
6.76 [1.99; 22.96], p = 0.002 respectively). We also found a
significant trend for TYMP (rs11479) based on two observed
homozygotes for the minor allele.

Adjusted results that we do not emphasise (to avoid multiple
comparisons and because a significant test for trend is the best
signal of an effect) were (1) an association for dose
modification and DHFR in/del heterozygotes; adjusted OR of
2.19 [1.12; 4.28], p=0.023, and OR of 2.15 [1.13; 4.08],
p=0.020 in the dominant model (2). An association for severe
toxicity and or SHMT1 (rs1979277) heterozygotes; an adjusted
OR of 0.40 [0.18; 0.88], p=0.023 compared to CC

Table 2. Demographic, clinical and pathological information
for 253 colorectal cancer patients.

Characteristic Number (%)
Males 145 (57.31)

Females 108 (42.68)

Median age 67

Age range 23 - 88

Histology Adenocarcinoma 221 (87.01)
 Mucinous adenocarcinoma 25 (9.84)
 Other / Unknown 7 (2.76)
Modified Dukes Classification
at diagnosis* A 6 (2.36)

 B 56 (22.05)
 C1 121 (47.64)
 C2 26 (10.24)
First line Chemotherapy Yes 209 (82.60)
 No 44 (17.39)
Treatment regime 5-FU monotherapy 63 (24.90)

 
Combination chemotherapy with 5-
FU

31 (12.25)

 Capecitabine monotherapy 58 (22.92)

 
Combination chemotherapy with
capecitabine

101 (39.92)

*. Dukes score from post-surgical histopathology reports where available.
doi: 10.1371/journal.pone.0078053.t002

homozygotes, and OR of 0.47 [0.23-0.97], p=0.041 in the
dominant model. No other adjusted results were significant.

Clinical Validity and Impact
Table S1 shows individualised data for the markers

associated with severe adverse events (DPYD and TYMP
genotypes) and clinical phenotype data for the 44 participants
who had severe adverse events. Nineteen of the 44
participants with severe adverse events carried at least one of
the candidate predictive markers.

If detection of the combined SNP signature was used as a
diagnostic procedure to identify those who would subsequently
suffer severe adverse events, the sensitivity would be 45.5 %,
with a positive predictive value of 33.9 %. The potential impact
of testing for the combined SNP signature and then changing
to a different chemotherapy regimen in affected individuals can
be estimated in a hypothetical clinical population of 1000
patients. If those patients had similar characteristics to those
within our cohort, 233 of them would be combined SNP
signature positive. The impact of changing the regimen in these
233 patients would be 79 fewer severe adverse events. Here,
95 patients would still have severe adverse events (down from
the original 174 with no testing performed). However, 156
patients with the combined SNP signature would have had their
regimen changed for no specific benefit because they would
not have gone on to develop severe adverse events.

Discussion

We present an analysis of functionally important genetic
variants in the pharmacokinetic and pharmacodynamic
pathways that influence response to fluoropyrimidines. The
phenotypes examined were adverse events that were identified
by a dose delay or dose modification within 12 weeks due to
toxicity, and by CTCAE grade 3, 4 or 5 scores.

Pharmacokinetics
Each of the pharmacokinetic variants that we consider are

compelling candidates as predictive markers because they
have a known or putative functional impact on the enzymes
needed for drug catabolism or their metabolism to an active
form.

The DPYD variants analysed lead to enzyme deficiency or
absence and their functional effects can be observed in
heterozygous carriers. However, each DPYD SNP is rare,
which reduces their potential clinical utility as predictive
markers. In this study therefore we have also considered these
DPYD variants as a signature of alternative polymorphisms,
and found a strong association with early adverse events (see
Tables S1 and S2).

TYMP encodes thymidine phosphorylase; the activity and
expression of which has a reported role in tumorigenesis as
well as activation of 5-FU and capecitabine [38]. We present a
novel finding about a variant that should now be tested in an
independent cohort. There is a significant association between
early adverse events and the TYMP SNP rs11479 (see tables
S1 and S2), the minor allele results in an amino acid
substitution (e.g. NP_001107227.1:p.Ser471Leu, though
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alternate splice forms have been described). The importance of
this particular variant is unclear; the amino acid substitution
occurs just outside the pyrimidine nucleoside phosphorylase C
terminal domain in most models and the Ser at this position is
not widely conserved in mammals. However, the variant could
also be in linkage disequilibrium with another polymorphism
that is functionally important. One previous pharmacogenetic
study of TYMP SNPs, including rs11479, failed to find an
association with the adverse event palmar-plantar syndrome in
a small (n = 130) mixed cohort of breast and colorectal cancer
patients treated with capecitabine [39]. In another small study
of colorectal cancer patients (n = 60) no association with
survival was found for a synonymous TYMP SNP, rs470119
[40].

We found no significant associations or trends for early dose
modifications or severe adverse events with the candidate
variants of UMPS (rs1801019) and CDA (rs2072671). Genetic
variants for these loci have previously been associated with
severe neutropenia and diarrhoea in patients treated with 5-FU
[41], and with palmar-plantar syndrome in patients treated with
capecitabine [39].

Pharmacodynamics
Inhibition of thimydylate synthase is an important

pharmacodynamic mechanism for fluoropyrimidines but the
balance of folate species within the biochemical pathway may
depend on the enzyme variants at key branch points [1]. We
have therefore examined candidate polymorphisms for
MTHFR, DHFR, MTHFD1, and SHMT in addition to TYMS.
These are non-synonymous SNPs or variants that affect
untranslated control regions; each polymorphism has a
demonstrated or putative influence on gene expression or
function.

No significant associations or trends were found for
individual polymorphisms that have been classified as low
activity thymidylate synthase variants and toxicity within 12
weeks (Table S2). In the analysis of TYMS genotypes, it has
been suggested that haplotype rather than genotype analysis
may improve the sensitivity and specificity of pharmacogenetic
testing. The G>C polymorphism in nucleotide 12 of the TYMS
28 bp VNTR repeat elements has been proposed to affect both
expression of TYMS in vitro and levels of 2’-deoxyuridine in
vivo. However, the published data are inconclusive, the
majority of the possible genotypes have not been examined in
relation to 5-FU sensitivity; different methods have been used
to test gene expression; and conclusions about the putative
functional effects have not been congruent [28,42-45]. Another
haplotype of clinical interest [46] comprises the 5’ and 3’ TYMS
variants, rs45445694 and rs16430 (also referred to as
rs34489327) for which there is linkage disequilibrium [9,12,32];
but again there have been conflicting findings about the
functional impact of the 3’ polymorphism [19,32,47].

In our previous systematic review and recent literature
search for pharmacogenetic studies of colorectal cancer
patients treated with fluoropyrimidines, no other studies were
identified that included an analysis of DHFR, SHMT or
MTHFD1 genotypes. Associations with an increased risk of
dose modification were identified for particular DHFR

genotypes and decreased risk of severe adverse events with
particular SHMT genotypes in this study. But we do not
emphasise these results because they derive from the adjusted
dominant model only and there was no concordance between
the 2 phenotypes considered (Table S2).

In summary, we did not identify any significant or compelling
associations between the individual candidate
pharmacodynamic markers and toxicity. This may reflect the
complexity of the intrinsic and extrinsic factors that affect
fluoropyrimidine response including dietary folate; leucovorin
provided as part of the therapeutic regime; and variability in
folate uptake.

Limitations of Observational Studies
The observational nature of this study means that potential

bias cannot be excluded. There are a number of factors that
could bias towards the null. This may stem from incomplete
recording of adverse events, missing data, or patients having
early dose modifications and/or prophylactic interventions
before higher grade events occurred. Small effect sizes,
coupled with low allele frequency in some instances would
have reduced the power of the study to detect any significant
association. Conversely, type I error may also occur in
erroneously reporting a significant finding when there is
actually no true association. This can stem from multiple testing
of a diverse range of genetic markers (particularly with post-
hoc or ‘data trawling’ analyses) and is a problem that may be
ameliorated through a Bonferroni correction. However,
Perneger highlights a number of methodological weaknesses
with Bonferroni corrections (such as an increased risk of type II
errors or false-negatives), and he recommends that Bonferroni
correction ‘should not be used when assessing evidence about
specific hypotheses’[48]. This point is particularly relevant to
our study because we have focused on the evaluation of pre-
specified variants selected through rigorous review of the
literature, and we have only highlighted associations identified
through adjusted tests for trend and a priori hypotheses.
Equally, unmeasured or residual confounding may explain
differences between groups, despite our statistical adjustments
for known confounders such as treatment protocol; for
example, the response to CAPOX, FOLFORI and FOLFOX
protocols can also be influenced by variants of enzymes that
are not part of fluoropyrimidine metabolism. However doctors,
patients and researchers were all blinded to the genotype
status of the patients throughout the study, thus making it less
likely that patients with particular genotypes were selected,
monitored or treated differently (selection, detection or
performance biases being unlikely due to Mendelian
randomization).

Conclusion and Future Directions
In conclusion, these data identify and confirm markers that

predict toxicity but our analysis of their clinical validity indicates
limited utility. This has important implications for helping
clinicians and patients arrive at evidence-based decisions on
the pros and cons of investing in commercially available
genotyping tests for predicting 5-FU toxicity during treatment of
colorectal cancer.
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Only a few pharmacogenetic studies of the genotypes
described have considered the role of epistasis but some
interactions have been identified that warrant further analysis
[19,46,49,50]. Most studies to date have been under-powered
to consider multiple pharmacokinetic and pharmacodynamic
variants simultaneously but this (Table S3) and similar
individualised data sets can be pooled in meta-analyses to
resolve uncertainties about the potential clinical utility of these
markers and their combined signatures.

Supporting Information

Table S1.  The genotypes at the loci DPYD and TYMP for
44 participants who had grade 3, 4 or 5 adverse events
within 12 weeks of starting the chemotherapeutic protocol.
Treatment regimes; 1 = 5-FU as monotherapy; 2 = 5FU in
combination chemotherapy; 3 = capecitabine as monotherapy;
4 = capecitabine in combination chemotherapy.
For the genotype data; 0 = homozygous for the minor allele; 1
= heterozygous; 2 = homozygous for the major (wild type)
allele. The genotypes 1236G>A and c1129-5923C>G are in
linkage disequilibrium.
LFT; liver function tests.
(DOC)

Table S2.  Analyses of associations between
fluoropyrimidine toxicity and genotype. The results from
the test for trend and from dominant and recessive genetic
models are shown.
(a) Main effect of polymorphisms on fluoropyrimidine dose
modification: markers of pharmacodynamics.
† Adjusted for age, sex, previous chemotherapy and treatment
regime using logistic regression ‡Fisher’s exact estimate used
*Test for trend could not be calculated because of 0
observations in one or both phenotype groups for homozygotes
in the minor allele.
(b) Main effect of polymorphisms on fluoropyrimidine dose
modification: markers of pharmacokinetics.
† Adjusted for age, sex, previous chemotherapy and treatment
regime using logistic regression ‡Fisher’s exact estimate used.

(c) Main effect of polymorphisms on grade 3, 4 or 5 toxicity
events: markers of pharmacodynamics.
† Adjusted for age, sex, previous chemotherapy and treatment
regime using logistic regression ‡Fisher’s exact estimate used.
(d) Main effect of polymorphisms on grade 3, 4 or 5 toxicity
events: markers of pharmacokinetics.
† Adjusted for age, sex, previous chemotherapy and treatment
regime using logistic regression ‡Fisher’s exact estimate used
*Test for trend could not be calculated because of 0
observations in one or both phenotype groups for homozygotes
in the minor allele.
(DOCX)

Table S3.  Individualised data for each toxicity phenotype.
(XLS)
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