2,177 research outputs found

    COVID-19-Associated Cardiovascular Complications

    Get PDF
    Coronavirus disease 2019 (COVID-19) has been reported to cause cardiovascular complications such as myocardial injury, thromboembolic events, arrhythmia, and heart failure. Multiple mechanisms—some overlapping, notably the role of inflammation and IL-6—potentially underlie these complications. The reported cardiac injury may be a result of direct viral invasion of cardiomyocytes with consequent unopposed effects of angiotensin II, increased metabolic demand, immune activation, or microvascular dysfunction. Thromboembolic events have been widely reported in both the venous and arterial systems that have attracted intense interest in the underlying mechanisms. These could potentially be due to endothelial dysfunction secondary to direct viral invasion or inflammation. Additionally, thromboembolic events may also be a consequence of an attempt by the immune system to contain the infection through immunothrombosis and neutrophil extracellular traps. Cardiac arrhythmias have also been reported with a wide range of implicated contributory factors, ranging from direct viral myocardial injury, as well as other factors, including at-risk individuals with underlying inherited arrhythmia syndromes. Heart failure may also occur as a progression from cardiac injury, precipitation secondary to the initiation or withdrawal of certain drugs, or the accumulation of des-Arg9-bradykinin (DABK) with excessive induction of pro-inflammatory G protein coupled receptor B1 (BK1). The presenting cardiovascular symptoms include chest pain, dyspnoea, and palpitations. There is currently intense interest in vaccine-induced thrombosis and in the treatment of Long COVID since many patients who have survived COVID-19 describe persisting health problems. This review will summarise the proposed physiological mechanisms of COVID-19-associated cardiovascular complications

    The Birchwood Junk Food Cafe, Skelmersdale

    Get PDF
    The University of Manchester conducted an evaluation of the Birchwood Junk Food Cafe, Skelmersdale, to assess the additional benefits of their adapted approach. A mixed methods evaluation was conducted, including interviews and questionnaires with both customers and those running the cafe. This highlighted benefits of the cafe and the impact of the cafe on its volunteers and customers. Key messages: Junk Food Cafes have the potential to have a positive impact on public health. Junk Food Cafes have the potential to help combat food poverty and social isolation in deprived communities

    Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications

    Get PDF
    Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and non-tumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Though research has not demonstrated complete and high yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies

    The Contrasting Behavior of Strongly and Weakly Interfacially Active Asphaltenes on the Rheology of Model Waxy Oils

    Get PDF
    Asphaltenes and waxes are two components of crude oil that cause flow assurance issues. Although the components coexist, few studies have considered the effect of asphaltenes on wax crystallization and gel-forming properties. Furthermore, the current understanding remains contradictory with both wax-alleviating and wax-aggravating behaviors observed. In this study, asphaltenes extracted from a heavy crude oil were fractionated into strongly and weakly interfacially active asphaltenes by partitioning at a water–oil interface. The two asphaltene fractions exhibited contrasting physicochemical properties, with the strongly interfacially active asphaltenes (IAA) being more polar due to their higher heteroatom content (particularly S and O) and forming larger aggregates in the solution compared to the weakly interfacially active asphaltenes (referred to as remaining asphaltenes, RA). The two asphaltene fractions lowered both the wax gelation temperature and wax appearance temperature; however, the effect was comparable. The unit cell lattice structure of the wax particle remained unchanged in the presence of asphaltenes, but the wax particles were found to be smaller with RA compared to IAA. However, the key finding of the study is how the two asphaltene fractions affected the yield strength of the gelled wax. For RA, the yield strength was lowered with an increasing asphaltene concentration, whereas for IAA, the overall effect was to increase the gel yield strength. Because the properties of the wax particles were largely unchanged by the two asphaltene fractions, the result suggests that the asphaltene–asphaltene interaction contributes to the overall yield strength. It was shown that the interaction between RA and RA is repulsive with negligible adhesion, whereas that between IAA and IAA is attractive with strong adhesion. These structure-breaker and structure-maker properties of the two asphaltenes confirm that the asphaltene–asphaltene interaction significantly contributes to modifying the yield strength of a waxy gel

    Inhibition of CDK4/6 as a novel therapeutic option for neuroblastoma

    Get PDF
    Background: Neuroblastoma is a neural crest-derived tumor and is the most common cancer in children less than 1 year of age. We hypothesized that aberrations in genes that control the cell cycle could play an important role in the pathogenesis of neuroblastoma and could provide a tractable therapeutic target. Methods: In this study, we screened 131 genes involved in cell cycle regulation at different levels by analyzing the effect of siRNA-mediated gene silencing on the proliferation of neuroblastoma cells. Results: Marked reductions in neuroblastoma cellular proliferation were recorded after knockdown of CCND1 or PLK1. We next showed that pharmacological inhibition of cyclin D1 dependent kinases 4/6 (CDK4/6) with PD 0332991 (palbociclib) reduced the growth of neuroblastoma cell lines, induced G1 cell cycle arrest, and inhibited the cyclin D1-Rb pathway. Conclusion: Selective inhibition of CDK4/6 using palbociclib may provide a new therapeutic option for treating neuroblastoma

    Improving survey methods in sero-epidemiological studies of injecting drug users: a case example of two cross sectional surveys in Serbia and Montenegro

    Get PDF
    BACKGROUND: Little is known about the prevalence of HIV or HCV in injecting drug users (IDUs) in Serbia and Montenegro. We measured prevalence of antibodies to HIV (anti-HIV) and hepatitis C virus (anti-HCV), and risk factors for anti-HCV, in community-recruited IDUs in Belgrade and Podgorica, and determined the performance of a parallel rapid HIV testing algorithm. METHODS: Respondent driven sampling and audio-computer assisted survey interviewing (ACASI) methods were employed. Dried blood spots were collected for unlinked anonymous antibody testing. Belgrade IDUs were offered voluntary confidential rapid HIV testing using a parallel testing algorithm, the performance of which was compared with standard laboratory tests. Predictors of anti-HCV positivity and the diagnostic accuracy of the rapid HIV test algorithm were calculated. RESULTS: Overall population prevalence of anti-HIV and anti-HCV in IDUs were 3% and 63% respectively in Belgrade (n = 433) and 0% and 22% in Podgorica (n = 328). Around a quarter of IDUs in each city had injected with used needles and syringes in the last four weeks. In both cities anti-HCV positivity was associated with increasing number of years injecting (eg Belgrade adjusted odds ratio (AOR) 5.6 (95% CI 3.2-9.7) and Podgorica AOR 2.5 (1.3-5.1) for >or= 10 years v 0-4 years), daily injecting (Belgrade AOR 1.6 (1.0-2.7), Podgorica AOR 2.1 (1.3-5.1)), and having ever shared used needles/syringes (Belgrade AOR 2.3 (1.0-5.4), Podgorica AOR 1.9 (1.4-2.6)). Half (47%) of Belgrade participants accepted rapid HIV testing, and there was complete concordance between rapid test results and subsequent confirmatory laboratory tests (sensitivity 100% (95%CI 59%-100%), specificity 100% (95%CI 98%-100%)). CONCLUSION: The combination of community recruitment, ACASI, rapid testing and a linked diagnostic accuracy study provide enhanced methods for conducting blood borne virus sero-prevalence studies in IDUs. The relatively high uptake of rapid testing suggests that introducing this method in community settings could increase the number of people tested in high risk populations. The high prevalence of HCV and relatively high prevalence of injecting risk behaviour indicate that further HIV transmission is likely in IDUs in both cities. Urgent scale up of HIV prevention interventions is needed

    A Partial Structural and Functional Rescue of a Retinitis Pigmentosa Model with Compacted DNA Nanoparticles

    Get PDF
    Previously we have shown that compacted DNA nanoparticles can drive high levels of transgene expression after subretinal injection in the mouse eye. Here we delivered compacted DNA nanoparticles containing a therapeutic gene to the retinas of a mouse model of retinitis pigmentosa. Nanoparticles containing the wild-type retinal degeneration slow (Rds) gene were injected into the subretinal space of rds+/− mice on postnatal day 5. Gene expression was sustained for up to four months at levels up to four times higher than in controls injected with saline or naked DNA. The nanoparticles were taken up into virtually all photoreceptors and mediated significant structural and biochemical rescue of the disease without histological or functional evidence of toxicity. Electroretinogram recordings showed that nanoparticle-mediated gene transfer restored cone function to a near-normal level in contrast to transfer of naked plasmid DNA. Rod function was also improved. These findings demonstrate that compacted DNA nanoparticles represent a viable option for development of gene-based interventions for ocular diseases and obviate major barriers commonly encountered with non-viral based therapies

    Elemental hydrochemistry assessment on its variation and quality status in Langat River, Western Peninsular Malaysia.

    Get PDF
    This paper discusses the hydrochemistry variation and its quality status in Langat River, based on the chemistry of major ions, metal concentrations and suitability for drinking purposes. Water samples were collected from 30 different stations to assess their hydrochemical characteristics. The physico-chemical parameters selected were temperature, electrical conductivity, total dissolved solids (TDS), salinity, dissolved oxygen , pH, redox potential, HCO3, Cl, SO4, NO3, Ca, Na, K, Mg, 27Al, 138Ba, 9Be, 111Cd, 59Co, 63Cu, 52Cr, 57Fe, 55Mn, 60Ni, 208Pb, 80Se and 66Zn to investigate the variation of the constituents in the river water. Most of the parameters comply with the Drinking Water Quality Standard of the World Health Organization and the Malaysian National Standard for Drinking Water Quality by the Malaysia Ministry of Health except for EC, TDS, Cl, HCO3, SO4, Na, Mg, Al, Fe and Se. The results show that the Langat River is unsuitable for drinking purposes directly without treatment

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore