475 research outputs found

    Permian palaeomagnetism of East Kazakhstan and the amalgamation of Eurasia

    Full text link
    Most of Kazakhstan belongs to the Ural–Mongol belt, the tectonic evolution of which is poorly understood as demonstrated by disparate tectonic models suggested thus far. We undertook a palaeomagnetic study of Upper Permian basalts and andesites from two localities in east Kazakhstan in order to evaluate the final stages of the evolution of this belt and Eurasian amalgamation. Thermal demagnetization revealed a single pre-tilting characteristic component of ubiquitously reversed polarity from all samples. The mean declination of this remanence from one locality agrees rather well with the Permian European palaeomeridian, whereas that from the other is clockwise rotated by 28°± 8° . The overall mean inclination of −49°± 4° differs by 9.7°± 4.2° from the reference inclination calculated, for our localities, from the Eurasian mean pole for the 245–260 Ma interval and is in agreement with 260–275 Ma data. We account for the observed pattern by either a slightly erroneous rock age (lithologies are somewhat older than indicated by geological data) or non-dipole (octopole) components of the geomagnetic field. Because significant relative motion of the study area with respect to Eurasia is not demonstrated, we conclude that welding of Kazakhstan, Europe and Siberia was essentially completed by Mid-Permian time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73262/1/j.1365-246X.2003.01879.x.pd

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC

    Full text link
    Precision studies of the production of a high-transverse momentum lepton in association with missing energy at hadron colliders require that electroweak and QCD higher-order contributions are simultaneously taken into account in theoretical predictions and data analysis. Here we present a detailed phenomenological study of the impact of electroweak and strong contributions, as well as of their combination, to all the observables relevant for the various facets of the p\smartpap \to {\rm lepton} + X physics programme at hadron colliders, including luminosity monitoring and Parton Distribution Functions constraint, WW precision physics and search for new physics signals. We provide a theoretical recipe to carefully combine electroweak and strong corrections, that are mandatory in view of the challenging experimental accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC, and discuss the uncertainty inherent the combination. We conclude that the theoretical accuracy of our calculation can be conservatively estimated to be about 2% for standard event selections at the Tevatron and the LHC, and about 5% in the very high WW transverse mass/lepton transverse momentum tails. We also provide arguments for a more aggressive error estimate (about 1% and 3%, respectively) and conclude that in order to attain a one per cent accuracy: 1) exact mixed O(ααs){\cal O}(\alpha \alpha_s) corrections should be computed in addition to the already available NNLO QCD contributions and two-loop electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be coherently included into a single event generator.Comment: One reference added. Final version to appear in JHE

    Electrostatic charging of jumping droplets

    Get PDF
    With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet–surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.United States. Dept. of Energy. Office of Basic Energy Sciences (Solid-State Solar-Thermal Energy Conversion Center Award DE-FG02-09ER46577)United States. Office of Naval ResearchNational Science Foundation (U.S.) (Major Research Instrumentation Grant for Rapid Response Research (MRI- RAPID))National Science Foundation (U.S.) (Award ECS-0335765)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374

    A measurement of the W boson mass using large rapidity electrons

    Get PDF
    We present a measurement of the W boson mass using data collected by the D0 experiment at the Fermilab Tevatron during 1994--1995. We identify W bosons by their decays to e-nu final states where the electron is detected in a forward calorimeter. We extract the W boson mass, Mw, by fitting the transverse mass and transverse electron and neutrino momentum spectra from a sample of 11,089 W -> e nu decay candidates. We use a sample of 1,687 dielectron events, mostly due to Z -> ee decays, to constrain our model of the detector response. Using the forward calorimeter data, we measure Mw = 80.691 +- 0.227 GeV. Combining the forward calorimeter measurements with our previously published central calorimeter results, we obtain Mw = 80.482 +- 0.091 GeV

    Differential Production Cross Section of Z Bosons as a Function of Transverse Momentum at sqrt{s}=1.8 TeV

    Get PDF
    We present a measurement of the transverse momentum distribution of Z bosons produced in ppbar collisions at sqrt{s}=1.8 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider during 1994--1996. We find good agreement between our data and a current resummation calculation. We also use our data to extract values of the non-perturbative parameters for a particular version of the resummation formalism, obtaining significantly more precise values than previous determinations.Comment: 10 pages, 2 figures, submitted to Phys. Rev. Letters v2 has margin error correcte

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Human Nasal Challenge with Streptococcus pneumoniae Is Immunising in the Absence of Carriage

    Get PDF
    Infectious challenge of the human nasal mucosa elicits immune responses that determine the fate of the host-bacterial interaction; leading either to clearance, colonisation and/or disease. Persistent antigenic exposure from pneumococcal colonisation can induce both humoral and cellular defences that are protective against carriage and disease. We challenged healthy adults intra-nasally with live 23F or 6B Streptococcus pneumoniae in two sequential cohorts and collected nasal wash, bronchoalveolar lavage (BAL) and blood before and 6 weeks after challenge. We hypothesised that both cohorts would successfully become colonised but this did not occur except for one volunteer. The effect of bacterial challenge without colonisation in healthy adults has not been previously assessed. We measured the antigen-specific humoral and cellular immune responses in challenged but not colonised volunteers by ELISA and Flow Cytometry. Antigen-specific responses were seen in each compartment both before and after bacterial challenge for both cohorts. Antigen-specific IgG and IgA levels were significantly elevated in nasal wash 6 weeks after challenge compared to baseline. Immunoglobulin responses to pneumococci were directed towards various protein targets but not capsular polysaccharide. 23F but not 6B challenge elevated IgG anti-PspA in BAL. Serum immunoglobulins did not increase in response to challenge. In neither challenge cohort was there any alteration in the frequencies of TNF, IL-17 or IFNγ producing CD4 T cells before or after challenge in BAL or blood. We show that simple, low dose mucosal exposure with pneumococci may immunise mucosal surfaces by augmenting anti-protein immunoglobulin responses; but not capsular or cellular responses. We hypothesise that mucosal exposure alone may not replicate the systemic immunising effect of experimental or natural carriage in humans

    Search for the standard model Higgs boson at LEP

    Get PDF

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore