118 research outputs found

    Pacing during an ultramarathon running event in hilly terrain

    Get PDF
    PURPOSE: The dynamics of speed selection as a function of distance, or pacing, are used in recreational, competitive, and scientific research situations as an indirect measure of the psycho-physiological status of an individual. The purpose of this study was to determine pacing on level, uphill and downhill sections of participants in a long (>80 km) ultramarathon performed on trails in hilly terrain. METHODS: Fifteen ultramarathon runners competed in a 173 km event (five finished at 103 km) carrying a Global-Positioning System (GPS) device. Using the GPS data, we determined the speed, relative to average total speed, in level (LEV), uphill (UH) and downhill (DH) gradient categories as a function of total distance, as well as the correlation between overall performance and speed variability, speed loss, and total time stopped. RESULTS: There were no significant differences in normality, variances or means in the relative speed in 173-km and 103-km participants. Relative speed decreased in LEV, UH and DH. The main component of speed loss occurred between 5% and 50% of the event distance in LEV, and between 5% and 95% in UH and DH. There were no significant correlations between overall performance and speed loss, the variability of speed, or total time stopped. CONCLUSIONS: Positive pacing was observed at all gradients, with the main component of speed loss occurring earlier (mixed pacing) in LEV compared to UH and DH. A speed reserve (increased speed in the last section) was observed in LEV and UH. The decrease in speed and variability of speed were more important in LEV and DH than in UH. The absence of a significant correlation between overall performance and descriptors of pacing is novel and indicates that pacing in ultramarathons in trails and hilly terrain differs to other types of running events

    Urban and Transport Planning Related Exposures and Mortality: A Health Impact Assessment for Cities

    Get PDF
    BACKGROUND: By 2050, almost 70% of people globally are projected to live in urban areas. As the environments we inhabit affect our health, urban and transport designs that promote healthy living are needed. OBJECTIVE: We estimated the number of premature deaths preventable under compliance with international exposure recommendations for physical activity (PA), air pollution, noise, heat, and access to green spaces. METHODS: We developed and applied the Urban and TranspOrt Planning Health Impact Assessment (UTOPHIA) tool to Barcelona. Exposure estimates and mortality data were available for 1357361 residents. We compared recommended with current exposure levels. We quantified the associations between exposures and mortality and calculated population attributable fractions to estimate the number of premature deaths preventable. We also modeled life-expectancy and economic impacts. RESULTS: We estimated that annually almost 20% of mortality could be prevented if international recommendations for performance of PA, exposure to air pollution, noise, heat, and access to green space were complied with. Estimations showed that the biggest share in preventable deaths was attributable to increases in PA, followed by exposure reductions in air pollution, traffic noise and heat. Access to green spaces had smaller effects on mortality. Compliance was estimated to increase the average life expectancy by 360 (95% CI: 219, 493) days and result in economic savings of 9.3 (95% CI: 4.9; 13.2) billion euro per year. CONCLUSIONS: PA factors and environmental exposures can be modified by changes in urban and transport planning. We emphasize the need for (1) the reduction of motorized traffic through the promotion of active and public transport and (2) the provision of green infrastructure, which are both suggested to provide PA opportunities and mitigation of air pollution, noise, and heat

    Physical Activity through Sustainable Transport Approaches (PASTA): a study protocol for a multicentre project

    Get PDF
    Introduction: Only one-third of the European population meets the minimum recommended levels of physical activity (PA). Physical inactivity is a major risk factor for non-communicable diseases. Walking and cycling for transport (active mobility, AM) are well suited to provide regular PA. The European research project Physical Activity through Sustainable Transport Approaches (PASTA) pursues the following aims: (1) to investigate correlates and interrelations of AM, PA, air pollution and crash risk; (2) to evaluate the effectiveness of selected interventions to promote AM; (3) to improve health impact assessment (HIA) of AM; (4) to foster the exchange between the disciplines of public health and transport planning, and between research and practice. Methods and analysis: PASTA pursues a mixed-method and multilevel approach that is consistently applied in seven case study cities. Determinants of AM and the evaluation of measures to increase AM are investigated through a large scale longitudinal survey, with overall 14 000 respondents participating in Antwerp, Barcelona, London, Örebro, Rome, Vienna and Zurich. Contextual factors are systematically gathered in each city. PASTA generates empirical findings to improve HIA for AM, for example, with estimates of crash risks, factors on AM-PA substitution and carbon emissions savings from mode shifts. Findings from PASTA will inform WHO's online Health Economic Assessment Tool on the health benefits from cycling and/or walking. The study's wide scope, the combination of qualitative and quantitative methods and health and transport methods, the innovative survey design, the general and city-specific analyses, and the transdisciplinary composition of the consortium and the wider network of partners promise highly relevant insights for research and practice. Ethics and dissemination: Ethics approval has been obtained by the local ethics committees in the countries where the work is being conducted, and sent to the European Commission before the start of the survey. The PASTA website (http://www.pastaproject.eu) is at the core of all communication and dissemination activities. This is an open access article distributed under the terms of the Creative Commons Attribution IGO License (https://creativecommons.org/licenses/by-nc/3.0/igo/), which permits use, distribution, and reproduction for non-commercial purposes in any medium, provided the original work is properly cited. In any reproduction of this article there should not be any suggestion that WHO or this article endorse any specific organisation or products. The use of the WHO logo is not permitted. This notice should be preserved along with the article's original URL. Document type: Articl

    Long-term exposure to air pollution and stroke incidence:A Danish Nurse cohort study

    Get PDF
    Ambient air pollution has been linked to stroke, but few studies have examined in detail stroke subtypes and confounding by road traffic noise, which was recently associated with stroke. Here we examined the association between long-term exposure to air pollution and incidence of stroke (overall, ischemic, hemorrhagic), adjusting for road traffic noise. In a nationwide Danish Nurse Cohort consisting of 23,423 nurses, recruited in 1993 or 1999, we identified 1,078 incident cases of stroke (944 ischemic and 134 hemorrhagic) up to December 31, 2014, defined as first-ever hospital contact. The full residential address histories since 1970 were obtained for each participant and the annual means of air pollutants (particulate matter with diameter < 2.5 μm and < 10 μm (PM2.5 and PM10), nitrogen dioxide (NO2), nitrogen oxides (NOx)) and road traffic noise were determined using validated models. Time-varying Cox regression models were used to estimate hazard ratios (HR) (95% confidence intervals (CI)) for the associations of one-, three, and 23-year running mean of air pollutants with stroke adjusting for potential confounders and noise. In fully adjusted models, the HRs (95% CI) per interquartile range increase in one-year running mean of PM2.5 and overall, ischemic, and hemorrhagic stroke were 1.12 (1.01–1.25), 1.13 (1.01–1.26), and 1.07 (0.80–1.44), respectively, and remained unchanged after adjustment for noise. Long-term exposure to ambient PM2.5 was associated with the risk of stroke independent of road traffic noise

    Physical Activity through Sustainable Transport Approaches (PASTA): A study protocol for a multicentre project

    Get PDF
    Introduction: Only one-third of the European population meets the minimum recommended levels of physical activity (PA). Physical inactivity is a major risk factor for non-communicable diseases. Walking and cycling for transport (active mobility, AM) are well suited to provide regular PA. The European research project Physical Activity through Sustainable Transport Approaches (PASTA) pursues the following aims: (1) to investigate correlates and interrelations of AM, PA, air pollution and crash risk; (2) to evaluate the effectiveness of selected interventions to promote AM; (3) to improve health impact assessment (HIA) of AM; (4) to foster the exchange between the disciplines of public health and transport planning, and between research and practice. Methods and analysis: PASTA pursues a mixed-method and multilevel approach that is consistently applied in seven case study cities. Determinants of AM and the evaluation of measures to increase AM are investigated through a large scale longitudinal survey, with overall 14 000 respondents participating in Antwerp, Barcelona, London, Örebro, Rome, Vienna and Zurich. Contextual factors are systematically gathered in each city. PASTA generates empirical findings to improve HIA for AM, for example, with estimates of crash risks, factors on AM-PA substitution and carbon emissions savings from mode shifts. Findings from PASTA will inform WHO's online Health Economic Assessment Tool on the health benefits from cycling and/or walking. The study's wide scope, the combination of qualitative and quantitative methods and health and transport methods, the innovative survey design, the general and city-specific analyses, and the transdisciplinary composition of the consortium and the wider network of partners promise highly relevant insights for research and practice. Ethics and dissemination: Ethics approval has been obtained by the local ethics committees in the countries where the work is being conducted, and sent to the European Commission before the start of the survey. The PASTA website (http://www.pastaproject.eu) is at the core of all communication and dissemination activities. This is an open access article distributed under the terms of the Creative Commons Attribution IGO License (https://creativecommons.org/licenses/by-nc/3.0/igo/), which permits use, distribution, and reproduction for non-commercial purposes in any medium, provided the original work is properly cited. In any reproduction of this article there should not be any suggestion that WHO or this article endorse any specific organisation or products. The use of the WHO logo is not permitted. This notice should be preserved along with the article's original URL

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Long-term air pollution exposure and Parkinson's disease mortality in a large pooled European cohort: An ELAPSE study

    Get PDF
    BACKGROUND: The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson's Disease (PD) remains limited. OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts. METHODS: Within the project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM 2.5), nitrogen dioxide (NO 2), black carbon (BC), and ozone (O 3), as well as 8 PM 2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders. RESULTS: Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM 2.5 (hazard ratio per 5 µg/m 3: 1.25; 95% confidence interval: 1.01-1.55), NO 2 (1.13; 0.95-1.34 per 10 µg/m 3), and BC (1.12; 0.94-1.34 per 0.5 × 10 -5m -1), and a negative association with O 3 (0.74; 0.58-0.94 per 10 µg/m 3). Associations of PM 2.5, NO 2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM 2.5 remained robust when adjusted for NO 2 (1.24; 0.95-1.62) or BC (1.28; 0.96-1.71), whereas associations with NO 2 or BC attenuated to null. O 3 associations remained negative, but no longer statistically significant in models with PM 2.5. We detected suggestive positive associations with the potassium component of PM 2.5. CONCLUSION: Long-term exposure to PM 2.5, at levels well below current EU air pollution limit values, may contribute to PD mortality

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure
    corecore