151 research outputs found

    Molecular Adaptation to Folivory and the Conservation Implications for Madagascar’s Lemurs

    Get PDF
    The lemurs of Madagascar include numerous species characterized by folivory across several families. Many extant lemuriform folivores exist in sympatry in Madagascar’s remaining forests. These species avoid feeding competition by adopting different dietary strategies within folivory, reflected in behavioral, morphological, and microbiota diversity across species. These conditions make lemurs an ideal study system for understanding adaptation to leaf-eating. Most folivorous lemurs are also highly endangered. The significance of folivory for conservation outlook is complex. Though generalist folivores may be relatively well equipped to survive habitat disturbance, specialist folivores occupying narrow dietary niches may be less resilient. Characterizing the genetic bases of adaptation to folivory across species and lineages can provide insights into their differential physiology and potential to resist habitat change. We recently reported accelerated genetic change in RNASE1, a gene encoding an enzyme (RNase 1) involved in molecular adaptation in mammalian folivores, including various monkeys and sifakas (genus Propithecus; family Indriidae). Here, we sought to assess whether other lemurs, including phylogenetically and ecologically diverse folivores, might show parallel adaptive change in RNASE1 that could underlie a capacity for efficient folivory. We characterized RNASE1in 21 lemur species representing all five families and members of the three extant folivorous lineages: (1) bamboo lemurs (family Lemuridae), (2) sportive lemurs (family Lepilemuridae), and (3) indriids (family Indriidae). We found pervasive sequence change in RNASE1 across all indriids, a dN/dS value \u3e 3 in this clade, and evidence for shared change in isoelectric point, indicating altered enzymatic function. Sportive and bamboo lemurs, in contrast, showed more modest sequence change. The greater change in indriids may reflect a shared strategy emphasizing complex gut morphology and microbiota to facilitate folivory. This case study illustrates how genetic analysis may reveal differences in functional traits that could influence species’ ecology and, in turn, their resilience to habitat change. Moreover, our results support the body of work demonstrating that not all primate folivores are built the same and reiterate the need to avoid generalizations about dietary guild in considering conservation outlook, particularly in lemurs where such diversity in folivory has probably led to extensive specialization via niche partitioning

    Fundamental Neutron Physics: a White Paper on Progress and Prospects in the US

    Full text link
    Fundamental neutron physics, combining precision measurements and theory, probes particle physics at short range with reach well beyond the highest energies probed by the LHC. Significant US efforts are underway that will probe BSM CP violation with orders of magnitude more sensitivity, provide new data on the Cabibbo anomaly, more precisely measure the neutron lifetime and decay, and explore hadronic parity violation. World-leading results from the US Fundamental Neutron Physics community since the last Long Range Plan, include the world's most precise measurement of the neutron lifetime from UCNτ\tau, the final results on the beta-asymmetry from UCNA and new results on hadronic parity violation from the NPDGamma and n-3{^3}He runs at the FNPB (Fundamental Neutron Physics Beamline), precision measurement of the radiative neutron decay mode and n-4{}^4He at NIST. US leadership and discovery potential are ensured by the development of new high-impact experiments including BL3, Nab, LANL nEDM and nEDM@SNS. On the theory side, the last few years have seen results for the neutron EDM from the QCD θ\theta term, a factor of two reduction in the uncertainty for inner radiative corrections in beta-decay which impacts CKM unitarity, and progress on {\it ab initio} calculations of nuclear structure for medium-mass and heavy nuclei which can eventually improve the connection between nuclear and nucleon EDMs. In order to maintain this exciting program and capitalize on past investments while also pursuing new ideas and building US leadership in new areas, the Fundamental Neutron Physics community has identified a number of priorities and opportunities for our sub-field covering the time-frame of the last Long Range Plan (LRP) under development. This white paper elaborates on these priorities.Comment: arXiv admin note: text overlap with arXiv:2304.0345

    Cyclic and Sleep-Like Spontaneous Alternations of Brain State Under Urethane Anaesthesia

    Get PDF
    Background: Although the induction of behavioural unconsciousness during sleep and general anaesthesia has been shown to involve overlapping brain mechanisms, sleep involves cyclic fluctuations between different brain states known as active (paradoxical or rapid eye movement: REM) and quiet (slow-wave or non-REM: nREM) stages whereas commonly used general anaesthetics induce a unitary slow-wave brain state. Methodology/Principal Findings: Long-duration, multi-site forebrain field recordings were performed in urethaneanaesthetized rats. A spontaneous and rhythmic alternation of brain state between activated and deactivated electroencephalographic (EEG) patterns was observed. Individual states and their transitions resembled the REM/nREM cycle of natural sleep in their EEG components, evolution, and time frame (,11 minute period). Other physiological variables such as muscular tone, respiration rate, and cardiac frequency also covaried with forebrain state in a manner identical to sleep. The brain mechanisms of state alternations under urethane also closely overlapped those of natural sleep in their sensitivity to cholinergic pharmacological agents and dependence upon activity in the basal forebrain nuclei that are the major source of forebrain acetylcholine. Lastly, stimulation of brainstem regions thought to pace state alternations in sleep transiently disrupted state alternations under urethane. Conclusions/Significance: Our results suggest that urethane promotes a condition of behavioural unconsciousness tha

    Service planning and delivery outcomes of home adaptations for ageing in the UK

    Get PDF
    In response to the impact of demographic change on the healthcare system, ‘ageing in place’ was introduced as a national policy to support elderly people living independently in their homes. Housing adaptation is essential for successful independent living and has been given increased political priority. However, adaptation policies and practice vary regionally, reflecting statutory limits, policy choices and local planning. This study investigated the current status of adaptation provision in different regions in the UK and assessed the effectiveness of local service planning and management. A mixed-methods sequential explanatory research strategy was employed. In the first quantitative phase, a questionnaire survey was carried out involving all 378 local authorities in England, Scotland and Wales. This was followed by a second qualitative phase involving individual interviews with five professionals and two clients and a focus group meeting with six key stakeholders. The study found that the current number of adaptations was relatively small compared with potential demands in most local areas, as was funding for adaptations. On the operational side, the adaptation process was fragmented, involving different service groups in many local authorities. There were disconnections between these groups, which often caused inefficiencies and poor effectiveness. Moving forward, local authorities need to have a clear vision of the overall need for adaptations and allocate sufficient resources. Practical guidelines are also needed for better integrated working and performance management

    A New Cryogenic Apparatus to Search for the Neutron Electric Dipole Moment

    Full text link
    A cryogenic apparatus is described that enables a new experiment, nEDM@SNS, with a major improvement in sensitivity compared to the existing limit in the search for a neutron Electric Dipole Moment (EDM). It uses superfluid 4^4He to produce a high density of Ultra-Cold Neutrons (UCN) which are contained in a suitably coated pair of measurement cells. The experiment, to be operated at the Spallation Neutron Source at Oak Ridge National Laboratory, uses polarized 3^3He from an Atomic Beam Source injected into the superfluid 4^4He and transported to the measurement cells as a co-magnetometer. The superfluid 4^4He is also used as an insulating medium allowing significantly higher electric fields, compared to previous experiments, to be maintained across the measurement cells. These features provide an ultimate statistical uncertainty for the EDM of 23×10282-3\times 10^{-28} e-cm, with anticipated systematic uncertainties below this level

    Finding Diagnostically Useful Patterns in Quantitative Phenotypic Data.

    Get PDF
    Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∼40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≥10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a "phenotype first" approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands

    Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

    Get PDF
    Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load. Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests. Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
    corecore