88 research outputs found
The impact of gender on the risk of cardiovascular events in older adults with advanced chronic kidney disease
Background. Patients with chronic kidney disease (CKD) are at a higher risk of major adverse cardiovascular events (MACE) compared with the general population, but gender differences in this risk, especially in older adults, are not fully known.We aim to identify gender differences in the risk of MACE in older European CKD patients, and explore factors that may explain these differences. Methods. The European Quality study (EQUAL) is a prospective study on stage 4-5 CKD patients, ≥65 years old, not on dialysis, from Germany, Italy, the Netherlands, Poland, Sweden and the UK. Cox regression and cumulative incidence competing risk curves were used to identify gender differences in MACE risks. Mediation analysis was used to identify variables which may explain risk differences between men and women. Results. A total of 417 men out of 1134 (37%) and 185 women out of 602 women (31%) experienced at least one MACE, over a follow-up period of 5 years.Women had an 18% lower risk of first MACE compared with men (hazard ratio 0.82; 95% confidence interval 0.69-0.97; P = .02), which was attenuated after adjusting for pre-existing cardiometabolic comorbidities and cardiovascular risk factors. There were no significant gender differences in the risk of recurrent MACE or fatal MACE. The risk difference in MACE by gender was larger in patients aged 65-75 years, compared with patients over 75 years. Conclusions. In a cohort of older adults with advanced CKD, women had lower risks of MACE. These risk differences were partially explained by pre-existing cardiometabolic comorbidities and cardiovascular risk factors.</p
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic
data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data
release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median
z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar
spectra, along with the data presented in previous data releases. These spectra
were obtained with the new BOSS spectrograph and were taken between 2009
December and 2011 July. In addition, the stellar parameters pipeline, which
determines radial velocities, surface temperatures, surface gravities, and
metallicities of stars, has been updated and refined with improvements in
temperature estimates for stars with T_eff<5000 K and in metallicity estimates
for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars
presented in DR8, including stars from SDSS-I and II, as well as those observed
as part of the SDSS-III Sloan Extension for Galactic Understanding and
Exploration-2 (SEGUE-2).
The astrometry error introduced in the DR8 imaging catalogs has been
corrected in the DR9 data products. The next data release for SDSS-III will be
in Summer 2013, which will present the first data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) along with another year of
data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at
http://www.sdss3.org/dr
The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III
The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society
Measuring collective action intention toward gender equality across cultures
Collective action is a powerful tool for social change and is fundamental to women and girls’ empowerment on a societal level. Collective action towards gender equality could be understood as intentional and conscious civic behaviors focused on social transformation, questioning power relations, and promoting gender equality through collective efforts. Various instruments to measure collective action intentions have been developed, but to our knowledge none of the published measures were subject to invariance testing. We introduce the gender equality collective action intention (GECAI) scale and examine its psychometric isomorphism and measurement invariance, using data from 60 countries (N = 31,686). Our findings indicate that partial scalar measurement invariance of the GECAI scale permits conditional comparisons of latent mean GECAI scores across countries. Moreover, this metric psychometric isomorphism of the GECAI means we can interpret scores at the country-level (i.e., as a group attribute) conceptually similar to individual attributes. Therefore, our findings add to the growing body of literature on gender based collective action by introducing a methodologically sound tool to measure collective action intentions towards gender equality across cultures
Measuring collective action intention toward gender equality across cultures
Collective action is a powerful tool for social change and is fundamental to women and girls’ empowerment on a societal level. Collective action towards gender equality could be understood as intentional and conscious civic behaviors focused on social transformation, questioning power relations, and promoting gender equality through collective efforts. Various instruments to measure collective action intentions have been developed, but to our knowledge none of the published measures were subject to invariance testing. We introduce the gender equality collective action intention (GECAI) scale and examine its psychometric isomorphism and measurement invariance, using data from 60 countries (N = 31,686). Our findings indicate that partial scalar measurement invariance of the GECAI scale permits conditional comparisons of latent mean GECAI scores across countries. Moreover, this metric psychometric isomorphism of the GECAI means we can interpret scores at the country-level (i.e., as a group attribute) conceptually similar to individual attributes. Therefore, our findings add to the growing body of literature on gender based collective action by introducing a methodologically sound tool to measure collective action intentions towards gender equality across cultures.info:eu-repo/semantics/acceptedVersio
SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems
Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II),
SDSS-III is a program of four spectroscopic surveys on three scientific themes:
dark energy and cosmological parameters, the history and structure of the Milky
Way, and the population of giant planets around other stars. In keeping with
SDSS tradition, SDSS-III will provide regular public releases of all its data,
beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an
overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5
million massive galaxies and Lya forest spectra of 150,000 quasars, using the
BAO feature of large scale structure to obtain percent-level determinations of
the distance scale and Hubble expansion rate at z<0.7 and at z~2.5. SEGUE-2,
which is now completed, measured medium-resolution (R=1800) optical spectra of
118,000 stars in a variety of target categories, probing chemical evolution,
stellar kinematics and substructure, and the mass profile of the dark matter
halo from the solar neighborhood to distances of 100 kpc. APOGEE will obtain
high-resolution (R~30,000), high signal-to-noise (S/N>100 per resolution
element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars,
measuring separate abundances for ~15 elements per star and creating the first
high-precision spectroscopic survey of all Galactic stellar populations (bulge,
bar, disks, halo) with a uniform set of stellar tracers and spectral
diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars
with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to
detect giant planets with periods up to two years, providing an unprecedented
data set for understanding the formation and dynamical evolution of giant
planet systems. (Abridged)Comment: Revised to version published in The Astronomical Journa
- …