32 research outputs found

    Migrating focal seizures and myoclonic status in ARV1-related encephalopathy

    Get PDF
    Objective: To report longitudinal clinical, EEG, and MRI findings in 2 sisters carrying compound heterozygous ARV1 mutations and exhibiting a peculiar form of developmental and epileptic encephalopathy (DEE). Neuropathologic features are also described in one of the sisters. Methods: Clinical course description, video-EEG polygraphic recordings, brain MRI, skin and muscle biopsies, whole-exome sequencing (WES), and brain neuropathology. Results: Since their first months of life, both girls exhibited severe axial hypotonia, visual inattention, dyskinetic movements, severe developmental delay, and slow background EEG activity. Intractable nonmotor seizures started in both at the eighth month of life, exhibiting the electroclinical characteristics of epilepsy of infancy with migrating focal seizures (EIMFS). In the second year of life, continuous epileptiform EEG activity of extremely high amplitude appeared in association with myoclonic status, leading to severely impaired alertness and responsiveness. Repeated brain MRI revealed progressive atrophic changes and severe hypomyelination. WES identified a compound heterozygous in the ARV1 gene [(p.Ser122Glnfs*7) and (p.Trp163*)] in one patient and was subsequently confirmed in the other. Both sisters died prematurely during respiratory infections. Postmortem neuropathologic examination of the brain, performed in one, revealed atrophic brain changes, mainly involving the cerebellum. Conclusions: This report confirms that biallelic ARV1 mutations cause a severe form of DEE and adds epilepsy with migrating focal seizures and myoclonic status to the spectrum of epilepsy phenotypes. Considering the potential role of human ARV1 in glycosylphosphatidylinositol (GPI) anchor biosynthesis, this severe syndrome can be assigned to the group of inherited GPI deficiency disorders, with which it shares remarkably similar clinical and neuroimaging features. ARV1 should be considered in the genetic screening of individuals with EIMFS

    Large Proteins Have a Great Tendency to Aggregate but a Low Propensity to Form Amyloid Fibrils

    Get PDF
    The assembly of soluble proteins into ordered fibrillar aggregates with cross-β structure is an essential event of many human diseases. The polypeptides undergoing aggregation are generally small in size. To explore if the small size is a primary determinant for the formation of amyloids under pathological conditions we have created two databases of proteins, forming amyloid-related and non-amyloid deposits in human diseases, respectively. The size distributions of the two protein populations are well separated, with the systems forming non-amyloid deposits appearing significantly larger. We have then investigated the propensity of the 486-residue hexokinase-B from Saccharomyces cerevisiae (YHKB) to form amyloid-like fibrils in vitro. This size is intermediate between the size distributions of amyloid and non-amyloid forming proteins. Aggregation was induced under conditions known to be most effective for amyloid formation by normally globular proteins: (i) low pH with salts, (ii) pH 5.5 with trifluoroethanol. In both situations YHKB aggregated very rapidly into species with significant β-sheet structure, as detected using circular dichroism and X-ray diffraction, but a weak Thioflavin T and Congo red binding. Moreover, atomic force microscopy indicated a morphology distinct from typical amyloid fibrils. Both types of aggregates were cytotoxic to human neuroblastoma cells, as indicated by the MTT assay. This analysis indicates that large proteins have a high tendency to form toxic aggregates, but low propensity to form regular amyloid in vivo and that such a behavior is intrinsically determined by the size of the protein, as suggested by the in vitro analysis of our sample protein

    Foscolo critico

    Get PDF
    Il volume, primo della collana open access dei "Quaderni di Gargnano", ospita i contributi presentati al XV Convegno internazionale di Letteratura italiana "Gennaro Barbarisi", tenutosi a Gargnano del Garda dal 24 al 26 settembre 2012. Il "Quaderno", dedicato al Foscolo critico, accoglie contributi di Giovanni Biancardi, Arnaldo Bruni, Andrea Campana, Massimo Castellozzi, Gustavo Costa, Alfredo Cottignoli, Christian Del Vento, Sandro Gentili, Franco Longoni, Ilaria Mangiavacchi, Donatella Martinelli, Giuseppe Natale, Enzo Neppi, Matteo Palumbo, Elena Parrini Cantini, Chiara Piola Caselli. \uc8 aperto da una Prefazione di Claudia Berra, Paolo Borsa e Giulia Ravera.This volume on "Foscolo critico" is the first volume of the "Quaderni di Gargnano", an open access book series which publishes the Proceedings of the "Gennaro Barbarisi" International Conferences on Italian Literature, held in Gargnano del Garda. It contains contributions by Giovanni Biancardi, Arnaldo Bruni, Andrea Campana, Massimo Castellozzi, Gustavo Costa, Alfredo Cottignoli, Christian Del Vento, Sandro Gentili, Franco Longoni, Ilaria Mangiavacchi, Donatella Martinelli, Giuseppe Natale, Enzo Neppi, Matteo Palumbo, Elena Parrini Cantini, Chiara Piola Caselli, preceded by a Preface by the Editor: Claudia Berra, Paolo Borsa, Giulia Ravera

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    The intrachain disulfide bridge is responsible of the unusual stability properties of novel acylphosphatase from Escherichia coli

    No full text
    AbstractAcylphosphatase (AcP) activity in prokaryotes was classically attributed to some aspecific acid phosphatases. We identified an open reading frame for a putative AcP in the b0968 Escherichia coli gene and purified the recombinant enzyme after checking by RT-PCR that it was indeed expressed. EcoAcP has a predicted typical fold of the AcP family but displays a very low specific activity and a high structural stability differently from its mesophilic and similarly to its hyperthermophilic counterparts. Site directed mutagenesis suggests that, together with other structural features, the intrachain S–S bridge in EcoAcP is involved in a remarkable thermal and chemical stabilization of the protein without affecting its catalytic activity
    corecore