423 research outputs found
Effective Potential on Fuzzy Sphere
The effective potential of quantized scalar field on fuzzy sphere is
evaluated to the two-loop level. We see that one-loop potential behaves like
that in the commutative sphere and the Coleman-Weinberg mechanism of the
radiatively symmetry breaking could be also shown in the fuzzy sphere system.
In the two-loop level, we use the heavy-mass approximation and the
high-temperature approximation to perform the evaluations. The results show
that both of the planar and nonplanar Feynman diagrams have inclinations to
restore the symmetry breaking in the tree level. However, the contributions
from planar diagrams will dominate over those from nonplanar diagrams by a
factor N^2. Thus, at heavy-mass limit or high-temperature system the quantum
field on the fuzzy sphere will behave like those on the commutative sphere. We
also see that there is a drastic reduction of the degrees of freedom in the
nonplanar diagrams when the particle wavelength is smaller than the
noncommutativity scale.Comment: Latex 18 pages, some typos correcte
Noncommutative Differential Calculus for D-brane in Non-Constant B Field Background
In this paper we try to construct noncommutative Yang-Mills theory for
generic Poisson manifolds. It turns out that the noncommutative differential
calculus defined in an old work is exactly what we need. Using this calculus,
we generalize results about the Seiberg-Witten map, the Dirac-Born-Infeld
action, the matrix model and the open string quantization for constant B field
to non-constant background with H=0.Comment: 21 pages, Latex file, references added, minor modificatio
Collapse of a semiflexible polymer in poor solvent
We investigate the dynamics and the pathways of the collapse of a single,
semiflexible polymer in a poor solvent via 3-D Brownian Dynamics simulations.
Earlier work indicates that the condensation of semiflexible polymers
generically proceeds via a cascade through metastable racquet-shaped,
long-lived intermediates towards the stable torus state. We investigate the
rate of decay of uncollapsed states, analyze the preferential pathways of
condensation, and describe likelihood and lifespan of the different metastable
states. The simulation are performed with a bead-stiff spring model with
excluded volume interaction and exponentially decaying attractive potential.
The semiflexible chain collapse is studied as functions of the three relevant
length scales of the phenomenon, i.e., the total chain length , the
persistence length and the condensation length , where is a measure of the attractive potential per unit
length. Two dimensionless ratios, and , suffice to describe
the decay rate of uncollapsed states, which appears to scale as . The condensation sequence is described in terms of the time series
of the well separated energy levels associated with each metastable collapsed
state. The collapsed states are described quantitatively through the spatial
correlation of tangent vectors along the chain. We also compare the results
obtained with a locally inextensible bead-rod chain and with a phantom
bead-spring model. Finally, we show preliminary results on the effects of
steady shear flow on the kinetics of collapse.Comment: 9 pages, 8 figure
Effects of Al doping on the structural and electronic properties of Mg(1-x)Al(x)B2
We have studied the structural and electronic properties of Mg(1-x)Al(x)B2
within the Virtual Crystal Approximation (VCA) by means of first-principles
total-energy calculations. Results for the lattice parameters, the electronic
band structure, and the Fermi surface as a function of Al doping for 0<x<0.6
are presented. The ab initio VCA calculations are in excellent agreement with
the experimentally observed change in the lattice parameters of Al doped MgB2.
The calculations show that the Fermi surface associated with holes a the boron
planes collapses gradually with aluminum doping and vanishes for x=0.56. In
addition, an abrupt topological change in the sigma-band Fermi surface was
found for x=0.3. The calculated hole density correlates closely with existing
experimental data for Tc(x), indicating that the observed loss of
superconductivity in Mg(1-x)Al(x)B2 is a result of hole bands filling.Comment: 4 pages (revtex) and 4 figures (postscript
Matrix dynamics of fuzzy spheres
We study the dynamics of fuzzy two-spheres in a matrix model which represents
string theory in the presence of RR flux. We analyze the stability of known
static solutions of such a theory which contain commuting matrices and SU(2)
representations. We find that irreducible as well as reducible representations
are stable. Since the latter are of higher energy, this stability poses a
puzzle. We resolve this puzzle by noting that reducible representations have
marginal directions corresponding to non-spherical deformations. We obtain new
static solutions by turning on these marginal deformations. These solutions now
have instability or tachyonic directions. We discuss condensation of these
tachyons which correspond to classical trajectories interpolating from
multiple, small fuzzy spheres to a single, large sphere. We briefly discuss
spatially independent configurations of a D3/D5 system described by the same
matrix model which now possesses a supergravity dual.Comment: 26 pages, 3 figures, uses JHEP.cls; (v2) references adde
Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere
We address a detailed non-perturbative numerical study of the scalar theory
on the fuzzy sphere. We use a novel algorithm which strongly reduces the
correlation problems in the matrix update process, and allows the investigation
of different regimes of the model in a precise and reliable way. We study the
modes associated to different momenta and the role they play in the ``striped
phase'', pointing out a consistent interpretation which is corroborated by our
data, and which sheds further light on the results obtained in some previous
works. Next, we test a quantitative, non-trivial theoretical prediction for
this model, which has been formulated in the literature: The existence of an
eigenvalue sector characterised by a precise probability density, and the
emergence of the phase transition associated with the opening of a gap around
the origin in the eigenvalue distribution. The theoretical predictions are
confirmed by our numerical results. Finally, we propose a possible method to
detect numerically the non-commutative anomaly predicted in a one-loop
perturbative analysis of the model, which is expected to induce a distortion of
the dispersion relation on the fuzzy sphere.Comment: 1+36 pages, 18 figures; v2: 1+55 pages, 38 figures: added the study
of the eigenvalue distribution, added figures, tables and references, typos
corrected; v3: 1+20 pages, 10 eps figures, new results, plots and references
added, technical details about the tests at small matrix size skipped,
version published in JHE
Super D-branes from BRST Symmetry
Recently a new formalism has been developed for the covariant quantization of
superstrings. We study properties of Dp-branes and p-branes in this new
framework, focusing on two different topics: effective actions and boundary
states for Dp-branes. We present a derivation of the Wess-Zumino terms for
super (D)p-branes using BRST symmetry. To achieve this we derive the BRST
symmetry for superbranes, starting from the approach with/without pure spinors,
and completely characterize the WZ terms as elements of the BRST cohomology. We
also develope the boundary state description of Dp-branes by analyzing the
boundary conditions for open strings in the completely covariant (i.e., without
pure spinors) BRST formulation.Comment: 31 pp; journal version, expended discussion of D-brane pure spinor
constraints in Section 2.
Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels.
Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among â€19,517 European ancestry and African-American individuals. We identify aggregate associations of low-frequency damaging variants in the urate transporters SLC22A12 (URAT1; pâ=â1.3âĂâ10 <sup>-56</sup> ) and SLC2A9 (pâ=â4.5âĂâ10 <sup>-7</sup> ). Gout risk in rare SLC22A12 variant carriers is halved (ORâ=â0.5, pâ=â4.9âĂâ10 <sup>-3</sup> ). Selected rare variants in SLC22A12 are validated in transport studies, confirming three as loss-of-function (R325W, R405C, and T467M) and illustrating the therapeutic potential of the new URAT1-blocker lesinurad. In SLC2A9, mapping of rare variants of large effects onto the predicted protein structure reveals new residues that may affect urate binding. These findings provide new insights into the genetic architecture of serum urate, and highlight molecular targets in SLC22A12 and SLC2A9 for lowering serum urate and preventing gout
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
- âŠ