179 research outputs found
Development of Numerical Method for Optimizing Silicon Solar Cell Efficiency
This paper presents a development of numerical method to determine and optimize the photocurrent
densities in silicon solar cell. This method is based on finite difference algorithm to resolve the continuity
and Poisson equations of minority charge carriers in p-n junction regions by using Thoma’s algorithm to
resolve the tridiagonal matrix. These equations include several physical parameters as the absorption coefficient and the reflection one of the material under the sunlight irradiation of AM1.5 solar spectrum. In this
work, we study the effect of various parameters such as thickness and doping concentration of the (emitter,
base) layers on crystalline silicon solar cell perfomance. The obtained results show that the optimum energy
conversion efficiency is 22.16 % with the following electrical parameters solar cell Voc = 0.62 V and
Jph = 43.20 mA · cm – 2. These results are compared with experimental data and show a good agreement of
our developped method
Studying bioluminescence flashes with the ANTARES deep-sea neutrino telescope
We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of underwater neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Variational Inference algorithm is used to reconstruct the model parameters using photon counts recorded by photomultiplier tubes. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can model the emitted bioluminescent flashes of the organisms. Furthermore, we find that the spatial resolution of the localization of light sources highly depends on the configuration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first localizations of bioluminescent organisms using neutrino telescope data
Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube
Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes
Event reconstruction for KM3NeT/ORCA using convolutional neural networks
The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Professional Training, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 713673), Spain.The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.French National Research Agency (ANR)
ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund)European Union (EU)Institut Universitaire de France (IUF)LabEx UnivEarthS
ANR-10-LABX-0023
ANR-18-IDEX-0001Shota Rustaveli National Science Foundation of Georgia
FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)
Research Projects of National Relevance (PRIN)Ministry of Higher Education, Scientific Research and Professional Training, MoroccoNetherlands Organization for Scientific Research (NWO)National Science Centre, Poland
2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovacion, Investigacion y Universidades
PGC2018-096663-B-C41
A-C42
B-C43
B-C44Severo Ochoa Centre of ExcellenceJunta de Andalucia
SOMM17/6104/UGRGeneralitat Valenciana: Grisolia
GRISOLIA/2018/119
CIDEGENT/2018/034La Caixa Foundation
LCF/BQ/IN17/11620019EU: MSC program
71367
gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes
Program summary
Program Title: gSeaGen
CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1
Licensing provisions: GPLv3
Programming language: C++
External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL
[3].
Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using
modern and maintained neutrino interaction simulation libraries which include the state-of-the-art
physics models. The default application is the simulation of neutrino interactions within KM3NeT [4].
Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte
Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is
considered as a reference code within the neutrino community.
Additional comments including restrictions and unusual features: The code was tested with GENIE version
2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic
to the code but due to the present GENIE valid energy range.
References:
[1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87.
[2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357.
[3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070.
[4] S. Adrián-Martínez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples
of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able
to generate events induced by all neutrino flavours, considering topological differences between tracktype
and shower-like events. Neutrino interactions are simulated taking into account the density and
the composition of the media surrounding the detector. The main features of gSeaGen are presented
together with some examples of its application within the KM3NeT project.French National Research Agency (ANR)
ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)European Union (EU)Institut Universitaire de France (IUF), FranceIdEx program, FranceUnivEarthS Labex program at Sorbonne Paris Cite
ANR-10-LABX-0023
ANR-11-IDEX-000502Paris Ile-de-France Region, FranceShota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia
FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)PRIN 2017 program Italy
NAT-NET 2017W4HA7SMinistry of Higher Education, Scientific Research and Professional Training, MoroccoNetherlands Organization for Scientific Research (NWO)
Netherlands GovernmentNational Science Centre, Poland
2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento, Spain (MCIU/FEDER)
PGC2018-096663-B-C41
PGC2018-096663-A-C42
PGC2018-096663-BC43
PGC2018-096663-B-C44Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia, Spain
SOMM17/6104/UGRGeneralitat Valenciana: Grisolia, Spain
GRISOLIA/2018/119GenT, Spain
CIDEGENT/2018/034La Caixa Foundation
LCF/BQ/IN17/11620019EU: MSC program, Spain
71367
Search for the Chiral Magnetic Effect in Au+Au collisions at GeV with the STAR forward Event Plane Detectors
A decisive experimental test of the Chiral Magnetic Effect (CME) is
considered one of the major scientific goals at the Relativistic Heavy-Ion
Collider (RHIC) towards understanding the nontrivial topological fluctuations
of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is
expected to result in a charge separation phenomenon across the reaction plane,
whose strength could be strongly energy dependent. The previous CME searches
have been focused on top RHIC energy collisions. In this Letter, we present a
low energy search for the CME in Au+Au collisions at
GeV. We measure elliptic flow scaled charge-dependent correlators relative to
the event planes that are defined at both mid-rapidity and at
forward rapidity . We compare the results based on the
directed flow plane () at forward rapidity and the elliptic flow plane
() at both central and forward rapidity. The CME scenario is expected
to result in a larger correlation relative to than to , while
a flow driven background scenario would lead to a consistent result for both
event planes[1,2]. In 10-50\% centrality, results using three different event
planes are found to be consistent within experimental uncertainties, suggesting
a flow driven background scenario dominating the measurement. We obtain an
upper limit on the deviation from a flow driven background scenario at the 95\%
confidence level. This work opens up a possible road map towards future CME
search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur
Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources
Instrumentatio
Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference
The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18
7 10 124 ) or temporal stage (p = 3.96
7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine
- …
