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This paper presents a development of numerical method to determine and optimize the photocurrent 

densities in silicon solar cell. This method is based on finite difference algorithm to resolve the continuity 

and Poisson equations of minority charge carriers in p-n junction regions by using Thoma’s algorithm to 

resolve the tridiagonal matrix. These equations include several physical parameters as the absorption coef-

ficient and the reflection one of the material under the sunlight irradiation of AM1.5 solar spectrum. In this 

work, we study the effect of various parameters such as thickness and doping concentration of the (emitter, 

base) layers on crystalline silicon solar cell perfomance. The obtained results show that the optimum ener-

gy conversion efficiency is 22.16 % with the following electrical parameters solar cell Voc  0.62 V and 

Jph  43.20 mAcm – 2. These results are compared with experimental data and show a good agreement of 

our developped method. 
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1. INTRODUCTION 
 

Crystalline and amorphous silicon solar cells are 

considered by many researchers to be the most promis-

ing energy generation technology, and become the dom-

inant photovoltaics (PV) technology for the future. Be-

cause silicon exhibits good stability, a well balanced set 

of physical and electronic popreties [1-3]. However, cost 

reduction is the main challenge for Si solar cells due to 

the use of expensive silicon wafer substrates cut and the 

requirement of high temperature processing during 

junction formation [4-8].  

Improvement of the efficiency of silicon solar cells is an 

essential requirement if the technology is to remain 

competitive with other PV technologies. Nowaday, the 

solar cells based on silicon have achieved efficiencies of 

around 20-25 % [9-15]. 

The principal parameters of solar cell are the follow-

ing: depth of layers, doping concentration and the layer 

of Back Surface Field (BSF), minority carrier lifetime, 

defect recombination, band gap, and resistivity. These 

parameters are curcial factors that influence the solar 

cell performance. Furthermore, the photovoltaic cells 

performance is determined from their current-voltage 

characteristic under illumination AM1.5. Also, it strong-

ly depends on the open circuit voltage, the short-circuit 

current, and on the Fill Factor (FF) [16-20]. In order to 

obtain high efficiency, it is necessary to optimize the 

cell’s parameters either experimentally or by simula-

tion. Experimental optimization has, on the one hand, 

the advantage of being real, and on the other hand, it is 

tiresome, costly, and it does not give us access to cer-

tain cell  parameters.  Concerning simulation optimiza-

tion, as it  follows a mathematical model more or less 

close to the real system, we can say that it is getting 

easy, cheaper, inexpensive and allows access to any 

parameter of the cell [21-23].  

The analytical expression for photocurrent can be 

found assuming simplified conditions in the different 

regions. But, we can notice some difficulties on the lev-

el of the determination of the electrical parameters’ 

solutions especially in the deplition region. Indeed, the 

electric field is not negligible and often the resolution of 

these equations is done in an approximate solution. It 

also can not directly determine the following physical 

quantities as the built-in potential, band energy and 

charge carrier density. In parallel, a numerical method 

can be done to solve an exact continuity and Poisson’s 

equations in the different cell regions. The used Finite 

Difference Method (FDM) is developed to find accurate 

results of carriers minority densities in a p-n junction 

[24, 25]. This method follows Thomas’s algorithm which 

is specific to the resolution of the tridiagonal matrix. 

The proposed numerical method is tested and analyzed 

by comparing the found results with experimental data 

[26, 27]. 

 This work deals with the cell parameters optimiza-

tion by following a numerical model of the physical and 

geometrical parameters of the different layers of a Sili-

con photovoltaic solar cell (Si). The high efficiency de-

vice is determined by accurate analysis of the impact of 

the thichkness and doping concentrations impurity of 

the emitter and base layers cell.  

 

2. MODELING OF P-N SOLAR CELL  
 

The p-n solar junction is formed of two region types 

p and n deposed on the metallic substrate aluminum 

(Al) as the back and front contacts. A diagram of this 

structure is illustrated in Fig. 1, the table 1 regroups 

the physical parameters used in simulation. This struc-

ture was studied under solar spectrum AM1.5, with in-

cident light power per unit area of a surface is equal to 

P  100 mW/cm ² and at room temperature T  300 K. 
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Fig. 1 – Schematic illustration of a p-n solar cell structure 
 

The total photocurrent Jph results from the sum of 

the three components, the drift current of the electrons 

Jn in the p type region, the drift current of the photo-

holes Jp in the n type region and the photogeneration 

Jg in the space charge region (SCR). This latter is con-

stituted by Jgn and Jgp in the space region beside P re-

gion and N region respectively:  Jg  Jgn + Jgp 

For a wavelength (λ) , the cell photocurrent is : 
 

 ( ) ( ) ( )  ( )ph n g pJ J J J       (2.1)  

 

The total photocurrent trough the cell is the result of 

integration of all solar spectrum: 
 

 
max

min

( ) ( ) ph phJ J d




     (2.2) 

 

The characteristic J(V) of the cell with is written as fol-

lows: 
 

 - exp( ) -1ph s

B

qv
J J J

k T

 
  

 
 (2.3) 

 

Where, q is the charge of the electron, T is the cell tem-

perature, Bk is the Boltzmann’s constant and sJ is the 

saturation current written as in the case of the p+-n 

junction : 
 

 

2

2 ( / )
i p

s

d p

qn D
J A cm

N L
  (2.4) 

 

Where nj, Dp, Nd, Lp and Dp are respectively the intrin-

sic density, donor concentration, and both the diffusion 

length and diffusion coefficient of holes. 

 

3. THEORY 
 

The basic equations for semiconductors device can be 

classified in three groups; for one- dimensional case [26]: 
 

 Poisson’s equation: 
E ρ

x ε





 (3.1) 

 Current densities equations: 
 

 n n n

n
J qμ nE qD

x


 


 (3.2) 

 p p p

p
J qμ pE qD

x


 


 (3.3) 

 

 Continuity equations: 
 

 
1 n

n n

Jn
G R

t q x


  

 
 (3.4) 

 
1 p

p p

Jp
G R

t q x


  

 
 (3.5) 

 

The generation rate ( ,  )G x   at position (x) is deter-

mined by the Beer-Lambert law relating to incident flux 

( )F  , reflectivity R(), and absorption coefficient a()  

as: 
 

 ( ,  ) ( )(1 ( )) ( )exp( ( ) )G x R F x          (3.6) 
 

The recombination rate ( ,  )R x   at position (x) in the 

p -type semiconductor is described by:  
 

 ( ,  ) ( ,  ) nR x n x     (3. 7) 

 

Where n  is the minority excess concentration of elec-

trons in the p-type semiconductor with respect to the 

equilibrium concentration 
0p

n  and nτ  is the minority 

electrons lifetime, n (x, )  np (x, ) – np0 (x, ). The 

hole recombination rate pR  in the quasi-neutral region 

of the n-type semiconductor is given by the same equa-

tion cited aboven only we subtitute n by p. 

In order to determine the total photocurrent we 

solve the continuity equations of electrons and holes in 

each region of the cell. 

In the case of the permanent mode, the continuity 

equation of electrons in the emitter region of the cell is 

written by (case of holes continuity equation in the base 

region can treated similarly): 
 

 
2

2
( )(1 ( )) ( )exp( ( ) )n

n

d n n
D R F x
dx

     



     (3.8) 

 

The boundary conditions, in the emitter region,  at the 

two edges satisfy the following equation [28]: 

 At the top contact (x  0): 
 

 
0

n n

x

n
S n D

x 


 


 (3.9) 

 

Where nS is the surface recombination velocity. 

 At the junction edge side (x  xp): 
 

 
0

2

n=

p

i
p

a x x

n
n

N


  (3.10) 

 

The photocurent density due to the diffusion charge car-

rier is obtained by the following formula: 

 

 
0

n n

x

n
J qD
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
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
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p
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In the SCR region, the electric field in the p-n Junction, 

is obtained by solving the Poisson’s equation: 
 

( );

( ) ( ( ));

0;                               .

a
p p p r

d
p p r p

qN
x x x x x x

ε

qN
E x x x W x x x x W

ε

otherwise


    



      





      (3.12) 

 

The expression of the space charge width area W  is such 

that: 
 

 02 1 1
( )r

d

a d

ε ε
W V

q N N
   (3.13) 

 

At the potential difference between the bands, an inter-

nal potential difference referred to as the diffusion po-

tential barrier dV  is expressed as: 

 

 
2

ln a d
d t

i

N N
V V

n

 
   

 
 (3.14) 

 

Where, tV  is the thermal voltage which equal 26 mV. 

Both the nD , pD  with (cm 2  s – 1), can be written as [21]: 

 

 18 1/21350 (1 81 / ( 3.2 10 ))n t a aD V N N     (3.15) 

 

 19 1/2480 (1 350 / ( 1.05 10 ))p t d dD V N N    (3.16) 

 

The minority carrier lifetimes nτ , pτ  with unity (s), 

are empirically expressed as [21]: 
 

 1612 (1 5 10 )n aτ N    (3.17) 

 

 1612 (1 5 10 )p dτ N    (3.18) 

 

At equilibrium state, equations (9) and (10) reduced to 

the following differential equations for electrons and 

holes: 
 

 
2

2
0n n n n

n

d n dn dE n
D μ E nμ G

dx dx τdx


      (3.19) 

 

 
2

2
0p p p p

p

d p dp dE p
D μ E pμ G

dx dx τdx


      (3.20) 

 

The boundary conditions in the depletion region are: 
 

 ( ) 0pn x x   ; 
0

( )p pn x n  (3. 21) 

 

 ( ) 0pn x x W    ; ( )p dn x x W N    (3. 22) 

 

An analogous expression the holes can be found by re-

placing n by p and n0 by p0 in Eq. (3.21, 3.22). 

 

4. DEVELOPMENT OF NUMERICAL METHOD    
 

The finite difference method is a numerical method 

to solve linear differential equations using finite differ-

ence approximations of the derived functions u(x).  

The interval [0, H] is divided into (M + 1) sub interval 

with steps h  H/(M + 1). Thus, we  search the solution 

at grid points in space 1 ( )i i Mx   . We will use the nota-

tion (ui) to denote the value of the function u(xi) at the  

i-th node of the computational grid. 

In general, the Taylor’s formula, at the first and se-

cond order, can be used to approximate the derivate of 

a function u(x) with centered differences around the 

points (i  1) of the interleaved mesh:  
 

 
2 2 2

( 1) ( 1)

1 1

( ) / ( )( ) ((

( ) ( )

2 )) /

2

i i

i

i i

i idu dx x u u

d u dx x u h

h

u u

 

   

 
 (4.1) 

 

The continuity equations of the minority carriers can be 

discretised in the following form (case of holes can be 

treated similarly): 
 

 1 1i i i i i i iau bu cu d     (4.2) 

 

This equation can be written in a tridiagonal matrix 

form and is solved using the Thomas’s algorithm [26]. 

The coefficients ai, bi, ci and di are given in the different 

regions of the solar cell as follows: 
 

-  In the neutral charges N and P (0 < x  xp): 

In the n-type region, the obtained coefficients are: 
 

ai 1, 2 2(2 )i nb h L   , ci  1, and 2 ( ) /i i nd h G x D  (4.3) 

 

The same coefficients in the p-type region 

(xp + W  x  H), only we subtitute Ln, Dn with Lp, Dp 

respectively. 

-  In the space charge region (xp < x < xp + W): 

We can distinguish between two regions: 

 The first is juxtaposed with p-type region 

(xp  x  xp + xr): 

The obtained coefficents are: 
 

 
 

 
0

2 2

2 2

(1 ( ) 2 ),  

(2 ( 1 ))

1 ( ) 2 ,  

( )

i n i n i

n a n n

i n i n i

i n p n

a μ hE x D b

h qμ N εD L

c μ hE x D d

h G x D n L

  

   
   


  

 (4.4)  

 

In this region, a density current is generated noted 

as: 1
scrJ .                                                                               

 The second  is juxtaposed to n-type region  

 (xp + xr  x  xp + W): 

We obtained the same coefficients related to the holes, 

but only we subtitute Na, n, Ln and Dn with – Nd, p, Lp 

and Dp. Here, the holes produce a density current noted 

as: 2
scrJ . 

For a wavelength (), the light-generated current Jscr is: 
  

 1 2
scr scr scrJ J J   (4.4) 

 

The obtained equations are a linear system can be 

written in matrix form as follows:  
 

 Au B  (4.5) 
 

The (u) values can be obtained by using Gauss 

Seidel’s  method [29].  
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5. RESULTS AND DISCUSSIONS 
 

In this study, the obtained results and literature 

values of the physical parameters are illustrated in the 

Table 2. In order to validate our developed method, we 

have presented, on the one hand, the experimenal data 

of studied material [30, 31]. These data are analyzed 

and introduced in the developed equations to extract 

interesting informations on properties in this field. On 

parameters by our method are presented and compared 

to the theory [21]. 

 

5.1 Experimental Data 
 

In this work, the absorption coefficient for sili-

con semiconductor material is shown in the figure below. 

Accurate modeling of Silicon solar cell requires more 

detailed knowledge of the absorption coefficient [30, 31].   
 

 
 

 

Fig. 2 – Variation of both silicon absorption coefficient (a), and flux of sunlight (b) versus wavelength 
 

 

Table 2 – Parameters set for numerical calculation of p-n Si 

junction [21] 
 

Parameters Value 

Emitter thickness (µm) 2 

Base thickness  (µm) 250 

Acceptor doping (cm – 3) 5  10 17 

Donor doping (cm – 3) 5  10 16 

Diffusion potential barrier (V) 0.83 

Electron  diffusion coefficient Dn (cm2s – 1) 10.1 

Hole  diffusion coefficient Dp (cm2s – 1) 7.61 

Electron mobility n (cm2V – 1.s – 1) 1.5  10 3 

Hole mobility p (cm2  V – 1  s – 1) 4.5  10 2 

Electron lifetime 𝜏n (µs) 1.09 

Hole lifetime 𝜏p (µs) 6 

Electron recomb. velocity Sn (cms – 1) 10 2 

Hole recomb. velocity Sp (cms – 1) 10 6 

 

5.2 Results of Electrical Parameters 
 

The developed method based on FDM allows the de-

termination of the densities currents in each region of 

the studied semiconductor. Using the equations (3.1-

3.5), the currents densities (Jph, Jscr, Jp and Jn) are cal-

culated and represented as a function of the wavelength 

() in Fig. 3. Many interesting information are extract-

ed from this figure, which are regrouped in three 

points; firstly, we note that there is two critical values 

of () which are: max 0.69μm  corresponds to a maxi-

mum of Jph and 0.56μmtresh   represents the maxi-

mum limit of Jn linearity. Secondly, the n-type region 

participates for the production of the current with a 

percentage of 40 % when max  and often this layer is 

less considered during the improvement of the photovol-

taic cell performance. While tresh  , only p-type re-

gion contribute to generate the current with a linear 

manner. Finally, the total  photocurrent Jph is relative-

ly low, when we get the other hand, the found electrical  

 
 

Fig. 3 – Current densities as a function of wavelength 
 

near to UV spectrum. Therefore, the reason laying be-

hind using technological techniques in the cells’ indus-

try is to add both a window layer on silicon single p-n 

junction and another one such as SiO2 in order to pas-

sivate the produced silicon cell. 

In table 3, we present the components of densities 

currents calculated by FDM and also the value of open 

circuit necessary to calculate the conversion efficient  

which equal 23.09  %. As shown, the most dominant 

current density relative to p- region is Jn; whereas, the 

contribution of deplition layer is small. 
 

Table 3 – Values of determined current densities 
 

Current densities (mAcm – 2) Jp Jg Jn 

FDM values 21.07 1.18 18.47 
 

In Table 4, the total photocurrent Jph is calculated 

using FDM and compared to both the analytical model 

[21] and the experimental data [13]. We observe that 

the results values are closer to the experimental ones 

and the difference between them is about 2.5 %. The 

obtained results are significantly better relatively to 

the analytical model refering to the experimental data.  

(a) 

 
(b) 
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Table 4 – Comparison of photovoltaic parameters in p-n Si 

solar cell 
 

 Developed 

Method 

Theortical 

Model 

Experimental 

data 

Jph (mAcm – 2) 
40.72 35.4 39.8 

Voc (V) 0.63 0.62 0.66 

η (%) 21.46 17.5 21.3 

Indeed, a simplification is used in the analytical 

model during the resolution of differential equation. In 

order to have a good performance of solar cell structure, 

an optimization is necessary on the level of the emitter 

and the base layers’ thickness Xp, Xn and doping Na, Nd 

respectively.  

 

  

Fig. 4 – Variation of the efficiency as a function of base thickness Xn (a), and emitter thickness Xp (b) 

 

Figure 4 shows the results of the energy conversion 

efficiency variation as a function of p-region thickness 

Xn and p-region thickness Xp. As we can see in Fig. 4a, 

the efficiency is increased with the increase of the base 

thickness and the optimal thickness is Xn  160 µm 

which leads to obtain a Maximum Efficiency Point   

(MEP) value of 22.45 %. While, the efficiency is de-

creased rapidly when the thickness of the emitter is 

increased as shown in Fig. 4b and an optimal thickness 

is Xp  0.01 m which corresponds to MEP of 

  21.56 %. 

The variation of the conversion efficiency versus 

both the doping acceptors and donors is presented in 

Figure 5. We notice in Fig. 5a, that when the acceptor 

concentration increases, the efficiency decreases rapid-

ly. In Fig. 5b, we notice that the efficiency slightly de-

creases whenever the donor concentration increases. 

We have obtained the Na  10 18 cm – 3 and 

Nd  4 10 16 cm – 3 as the optimal doping concentration. 

They lead to achieve a maximum energy conversion 

efficiency equal to 22.16 %. The electrical parameters 

values correspanding to the above obtained efficiency 

are Voc  0.62 V and Jph  43.20 mAcm – 2. This result 

will be realized by using the nanotechnologies products 

or to be more specific nanomaterials with higher ab-

sorption coefficient of the light spectrum. 

 

  

Fig. 5 – Variation of the efficiency as a function of the emitter (a), and base doping regions (b) 

 

6. CONCLUSION 
 

In this work, a numerical method is developed to 

determine physical and electrical quantities of crystal-

line silicon solar cells using the finite difference meth-

od. The discretization of minority carriers continuity 

and Poisson’s equations allow to determine the current 

density components in different regions. After analyz-

ing these currents, we conclude that the region respon-

sible for producing the most photoelectric is the emitter 

layer. The obtained results are compared with the ex-

perimental data, and reveals that the achieved cell 

conversion efficiency is 21.46 %. This latter value is 

better than those obtained by analytical model about 

(a) 
(b) 

(a) 

(b) 
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4.46 %, showing that the our developed method is effi-

cient. Consequently, the found optimal physical and 

geometrical parameters of the studied cell are 

Xp  0.01 m, Xn  160 m, Na  10 18 cm – 3 and 

Nd  4  10 16 cm – 3. These values lead to achieve a cell 

efficiency of 22.16 % with the following electrical pa-

rameters Voc  0.62 V and Jph  43.20 mAcm – 2, and 

show an improvement in the silicon photovoltaic cell 

efficency. 
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