89 research outputs found

    Gold-iron oxide (Au/Fe3O4) magnetic nanoparticles as the nanoplatform for binding of bioactive molecules through self-assembly

    Get PDF
    Nanomedicine plays a crucial role in the development of next-generation therapies. The use of nanoparticles as drug delivery platforms has become a major area of research in nanotechnology. To be effective, these nanoparticles must interact with desired drug molecules and release them at targeted sites. The design of these “nanoplatforms” typically includes a functional core, an organic coating with functional groups for drug binding, and the drugs or bioactive molecules themselves. However, by exploiting the coordination chemistry between organic molecules and transition metal centers, the self-assembly of drugs onto the nanoplatform surfaces can bypass the need for an organic coating, simplifying the materials synthesis process. In this perspective, we use gold-iron oxide nanoplatforms as examples and outline the prospects and challenges of using self-assembly to prepare drug-nanoparticle constructs. Through a case study on the binding of insulin on Au-dotted Fe3O4 nanoparticles, we demonstrate how a self-assembly system can be developed. This method can also be adapted to other combinations of transition metals, with the potential for scaling up. Furthermore, the self-assembly method can also be considered as a greener alternative to traditional methods, reducing the use of chemicals and solvents. In light of the current climate of environmental awareness, this shift towards sustainability in the pharmaceutical industry would be welcomed

    Essential ocean variables for global sustained observations of biodiversity and ecosystem changes

    Get PDF
    International audience; Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver-pressure-state-impact-response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zoo-plankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time-series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices

    Visualizing gas adsorption on porous solids:Four simple, effective demonstrations

    No full text

    Narrow-pore zeolites and zeolite-like adsorbents for CO2 separation

    No full text
    A range of porous solid adsorbents were synthesised and their ability to separate and capture carbon dioxide (CO2) from gas mixtures was examined. CO2 separation from flue gas – a type of exhaust gas from fossil fuel combustion that consists of CO2 mixed with mainly nitrogen and biogas (consists of CO2 mixed with mainly methane) were explicitly considered. The selected adsorbents were chosen partly due to their narrow pore sizes. Narrow pores can differentiate gas molecules of different sizes via a kinetic separation mechanism: a large gas molecule should find it more difficult to enter a narrow pore. CO2 has the smallest kinetic diameter in zeolites when compared with the other two gases in this study. Narrow pore adsorbents can therefore, show enhanced kinetic selectivity to adsorb CO2 from a gas mixture. The adsorbents tested in this study included mixed cation zeolite A, zeolite ZK-4, a range of aluminophosphates and silicoaluminophosphates, as well as two types of titanium silicates (ETS-4, CTS-1). These adsorbents were compared with one another from different aspects such as CO2 capacity, CO2 selectivity, cyclic performance, working capacity, cost of synthesis, etc. Each of the tested adsorbents has its advantages and disadvantages. Serval phosphates were identified as potentially good CO2 adsorbents, but the high cost of their synthesis must be addressed in order to develop these adsorbents for applications.At the time of the doctoral defence the following papers were unpublished and had a status as follows: Papers 4-8: Manuscripts.</p

    Zeolites and related sorbents with narrow pores for CO<sub>2</sub> separation from flue gas

    No full text
    Adsorbents with small pores are especially relevant for capturing carbon dioxide at large emission sources.</p

    Structural tuning of fluorinated hybrid ultramicroporous materials (HUMs) for low-concentration CO2 capture

    No full text
    Hybrid ultramicroprous materials (HUMs) with a number of different variations of the inorganic pillars as well as surface functional groups have been tested as CO2 sorbent for low-concentration CO2 capture. Specifically well-known HUM NbOFFIVE-1-Ni (NbOFFIVE=(NbOF5)2-, 1=pyz, Ni=nickel(II)) like HUMs were synthesized in this study by replaces Nb with V and Ta. Replacing the metal center from Nb to V or Ta showed that the CO2 adsorption isotherm, in particular at low partial pressures, adopted different shapes and gradient. This study shows that the CO2 adsorption properties at low partial pressures on HUMs can be affected by the metal present in the inorganic pillars
    corecore