29 research outputs found

    Fish and coral communities along the seawall of Sutera Harbour Marina, Kota Kinabalu, Sabah, Malaysia

    Get PDF
    Coastal development involves the introduction of artificial substrates into the natural marine environment, thereby altering and causing the loss of natural habitat. Nevertheless, such artificial structures are known to provide novel habitat for the recruitment and growth of epifauna. Seawalls serve as hard substrata on which assemblages of benthic communities have been observed to settle and proliferate. This study investigated the diversity and abundance of marine fauna, with a primary focus on fish and hard coral communities along the seawall of Sutera Harbour Marina, Kota Kinabalu, Malaysia, in 2015 and 2022. Additionally, benthic cover was assessed in 2022. The assessment was conducted along 12 belt transects (each measuring 10 m × 3 m) placed on the seawall approximately 2–3 m from the bottom. Data on the diversity and abundance of fish and hard coral colonies were collected. Results showed that 105 fish species from 32 families and 48 genera of hard corals from 17 families inhabited the marina. There was an increase in the abundance and colony size of hard corals over time. Additional benthic data collected in 2022 indicated that the seawalls had a fair coral cover of 31.7%. Although the taxa richness for fish and hard corals was lower compared to surrounding natural reef habitats, this study presented that artificial structures such as seawalls in the marina can support the natural colonization of marine fauna. This study underscores the importance of artificial structures as possible refuges for marine organisms, particularly in urbanized coastal areas

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Rapamycin synergizes cisplatin sensitivity in basal-like breast cancer cells through up-regulation of p73.

    Get PDF
    Recent gene expression profiling studies have identified five breast cancer subtypes, of which the basal-like subtype is the most aggressive. Basal-like breast cancer poses serious clinical challenges as there are currently no targeted therapies available to treat it. Although there is increasing evidence that these tumors possess specific sensitivity to cisplatin, its success is often compromised due to its dose-limiting nephrotoxicity and the development of drug resistance. To overcome this limitation, our goal was to maximize the benefits associated with cisplatin therapy through drug combination strategies. Using a validated kinase inhibitor library, we showed that inhibition of the mTOR, TGFβRI, NFκB, PI3K/AKT, and MAPK pathways sensitized basal-like MDA-MB-468 cells to cisplatin treatment. Further analysis demonstrated that the combination of the mTOR inhibitor rapamycin and cisplatin generated significant drug synergism in basal-like MDA-MB-468, MDA-MB-231, and HCC1937 cells but not in luminal-like T47D or MCF-7 cells. We further showed that the synergistic effect of rapamycin plus cisplatin on basal-like breast cancer cells was mediated through the induction of p73. Depletion of endogenous p73 in basal-like cells abolished these synergistic effects. In conclusion, combination therapy with mTOR inhibitors and cisplatin may be a useful therapeutic strategy in the treatment of basal-like breast cancers

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    <i>Chlamydiaceae</i>: Diseases in Primary Hosts and Zoonosis

    No full text
    Bacteria of the Chlamydiaceae family are a type of Gram-negative microorganism typified by their obligate intracellular lifestyle. The majority of the members in the Chlamydiaceae family are known pathogenic organisms that primarily infect the host mucosal surfaces in both humans and animals. For instance, Chlamydia trachomatis is a well-known etiological agent for ocular and genital sexually transmitted diseases, while C. pneumoniae has been implicated in community-acquired pneumonia in humans. Other chlamydial species such as C. abortus, C. caviae, C. felis, C. muridarum, C. pecorum, and C. psittaci are important pathogens that are associated with high morbidities in animals. Importantly, some of these animal pathogens have been recognized as zoonotic agents that pose a significant infectious threat to human health through cross-over transmission. The current review provides a succinct recapitulation of the characteristics as well as transmission for the previously established members of the Chlamydiaceae family and a number of other recently described chlamydial organisms

    An Overview of <i>Helicobacter pylori</i> Survival Tactics in the Hostile Human Stomach Environment

    No full text
    Helicobacter pylori is well established as a causative agent for gastritis, peptic ulcer, and gastric cancer. Armed with various inimitable virulence factors, this Gram-negative bacterium is one of few microorganisms that is capable of circumventing the harsh environment of the stomach. The unique spiral structure, flagella, and outer membrane proteins accelerate H. pylori movement within the viscous gastric mucosal layers while facilitating its attachment to the epithelial cells. Furthermore, secretion of urease from H. pylori eases the acidic pH within the stomach, thus creating a niche for bacteria survival and replication. Upon gaining a foothold in the gastric epithelial lining, bacterial protein CagA is injected into host cells through a type IV secretion system (T4SS), which together with VacA, damage the gastric epithelial cells. H. pylori does not only establishes colonization in the stomach, but also manipulates the host immune system to permit long-term persistence. Prolonged H. pylori infection causes chronic inflammation that precedes gastric cancer. The current review provides a brief outlook on H. pylori survival tactics, bacterial-host interaction and their importance in therapeutic intervention as well as vaccine development

    Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion

    No full text
    The progressive decline of CD8+ cytotoxic T cells in human immunodeficiency virus (HIV)-infected patients due to infection-triggered cell exhaustion and cell death is significantly correlated with disease severity and progression into the life-threatening acquired immunodeficiency syndrome (AIDS) stage. T cell exhaustion is a condition of cell dysfunction despite antigen engagement, characterized by augmented surface expression of immune checkpoint molecules such as programmed cell death protein 1 (PD-1), which suppress T cell receptor (TCR) signaling and negatively impact the proliferative and effector activities of T cells. T cell function is tightly modulated by cellular glucose metabolism, which produces adequate energy to support a robust reaction when battling pathogen infection. The transition of the T cells from an active to an exhausted state following pathogen persistence involves a drastic change in metabolic activity. This review highlights the interplay between immune checkpoint molecules and glucose metabolism that contributes to T cell exhaustion in the context of chronic HIV infection, which could deliver an insight into the rational design of a novel therapeutic strategy

    Immune Recognition versus Immune Evasion Systems in Zika Virus Infection

    No full text
    The reemergence of the Zika virus (ZIKV) infection in recent years has posed a serious threat to global health. Despite being asymptomatic or mildly symptomatic in a majority of infected individuals, ZIKV infection can result in severe manifestations including neurological complications in adults and congenital abnormalities in newborns. In a human host, ZIKV is primarily recognized by RIG-like receptors and Toll-like receptors that elicit anti-viral immunity through the secretion of type I interferon (IFN) to limit viral survival, replication, and pathogenesis. Intriguingly, ZIKV evades its host immune system through various immune evasion strategies, including suppressing the innate immune receptors and signaling pathways, mutation of viral structural and non-structural proteins, RNA modulation, or alteration of cellular pathways. Here, we present an overview of ZIKV recognition by the host immune system and the evasion strategies employed by ZIKV. Characterization of the host–viral interaction and viral disease mechanism provide a platform for the rational design of novel prophylactic and therapeutic strategies against ZIKV infection

    Helicobacter pylori Infection Elicits Type I Interferon Response in Human Monocytes via Toll-Like Receptor 8 Signaling

    No full text
    Helicobacter pylori colonization and persistence could precede gastric adenocarcinoma. Elucidating immune recognition strategies of H. pylori is therefore imperative to curb chronic persistence in the human host. Toll-like receptor 7 (TLR7) and TLR8 are widely known as viral single-stranded RNA (ssRNA) sensors yet less studied in the bacteria context. Here, we investigated the involvement of these receptors in the immunity to H. pylori. Human THP-1 monocytic cells were infected with H. pylori, and the expression levels of human Toll-like receptors (TLRs) were examined. The roles of TLR7 and TLR8 in response to H. pylori infection were further investigated using receptor antagonists. Among all TLR transcripts examined, TLR8 exhibited the most prominent upregulation, followed by TLR7 in the THP-1 cells infected with H. pylori J99 or SS1 strains. H. pylori infection-mediated IFN-α and IFN-β transactivation was significantly abrogated by the TLR7/8 (but not TLR7) antagonist. Additionally, TLR7/8 antagonist treatment reduced H. pylori infection-mediated phosphorylation of interferon regulatory factor 7 (IRF7). Our study suggests a novel role of TLR8 signaling in host immunity against H. pylori through sensing live bacteria to elicit the production of type I interferon

    Lung–infiltrating T helper 17 cells as the major source of interleukin-17A production during pulmonary Cryptococcus neoformans infection

    No full text
    Background: IL-17A has emerged as a key player in the pathologies of inflammation, autoimmune disease, and immunity to microbes since its discovery two decades ago. In this study, we aim to elucidate the activity of IL-17A in the protection against Cryptococcus neoformans, an opportunistic fungus that causes fatal meningoencephalitis among AIDS patients. For this purpose, we examined if C. neoformans infection triggers IL-17A secretion in vivo using wildtype C57BL/6 mice. In addition, an enhanced green fluorescence protein (EGFP) reporter and a knockout (KO) mouse models were used to track the source of IL-17A secretion and explore the protective function of IL-17A, respectively. Results: Our findings showed that in vivo model of C. neoformans infection demonstrated induction of abundant IL-17A secretion. By examining the lung bronchoalveolar lavage fluid (BALF), mediastinal lymph node (mLN) and spleen of the IL-17A-EGFP reporter mice, we showed that intranasal inoculation with C. neoformans promoted leukocytes lung infiltration. A large proportion (~ 50%) of the infiltrated CD4+ helper T cell population secreted EGFP, indicating vigorous TH17 activity in the C. neoformans-infected lung. The infection study in IL-17A-KO mice, on the other hand, revealed that absence of IL-17A marginally boosted fungal burden in the lung and accelerated the mouse death. Conclusion: Therefore, our data suggest that IL-17A is released predominantly from TH17 cells in vivo, which plays a supporting role in the protective immunity against C. neoformans infection
    corecore