136 research outputs found

    A simple derivation of the Tracy-Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix

    Full text link
    In this paper, we first briefly review some recent results on the distribution of the maximal eigenvalue of a (N×N)(N\times N) random matrix drawn from Gaussian ensembles. Next we focus on the Gaussian Unitary Ensemble (GUE) and by suitably adapting a method of orthogonal polynomials developed by Gross and Matytsin in the context of Yang-Mills theory in two dimensions, we provide a rather simple derivation of the Tracy-Widom law for GUE. Our derivation is based on the elementary asymptotic scaling analysis of a pair of coupled nonlinear recursion relations. As an added bonus, this method also allows us to compute the precise subleading terms describing the right large deviation tail of the maximal eigenvalue distribution. In the Yang-Mills language, these subleading terms correspond to non-perturbative (in 1/N1/N expansion) corrections to the two-dimensional partition function in the so called `weak' coupling regime.Comment: 2 figure

    Predicting gene function using hierarchical multi-label decision tree ensembles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>S. cerevisiae</it>, <it>A. thaliana </it>and <it>M. musculus </it>are well-studied organisms in biology and the sequencing of their genomes was completed many years ago. It is still a challenge, however, to develop methods that assign biological functions to the ORFs in these genomes automatically. Different machine learning methods have been proposed to this end, but it remains unclear which method is to be preferred in terms of predictive performance, efficiency and usability.</p> <p>Results</p> <p>We study the use of decision tree based models for predicting the multiple functions of ORFs. First, we describe an algorithm for learning hierarchical multi-label decision trees. These can simultaneously predict all the functions of an ORF, while respecting a given hierarchy of gene functions (such as FunCat or GO). We present new results obtained with this algorithm, showing that the trees found by it exhibit clearly better predictive performance than the trees found by previously described methods. Nevertheless, the predictive performance of individual trees is lower than that of some recently proposed statistical learning methods. We show that ensembles of such trees are more accurate than single trees and are competitive with state-of-the-art statistical learning and functional linkage methods. Moreover, the ensemble method is computationally efficient and easy to use.</p> <p>Conclusions</p> <p>Our results suggest that decision tree based methods are a state-of-the-art, efficient and easy-to-use approach to ORF function prediction.</p

    Immunologic and pathologic characterization of a novel swine biomedical research model for eosinophilic esophagitis

    Get PDF
    Eosinophilic esophagitis (EoE) is a chronic allergy-mediated condition with an increasing incidence in both children and adults. Despite EoE's strong impact on human health and welfare, there is a large unmet need for treatments with only one recently FDA-approved medication for EoE. The goal of this study was to establish swine as a relevant large animal model for translational biomedical research in EoE with the potential to facilitate development of therapeutics. We recently showed that after intraperitoneal sensitization and oral challenge with the food allergen hen egg white protein (HEWP), swine develop esophageal eosinophilia—a hallmark of human EoE. Herein, we used a similar sensitization and challenge treatment and evaluated immunological and pathological markers associated with human EoE. Our data demonstrate that the incorporated sensitization and challenge treatment induces (i) a systemic T-helper 2 and IgE response, (ii) a local expression of eotaxin-1 and other allergy-related immune markers, (iii) esophageal eosinophilia (>15 eosinophils/0.24 mm2), and (iv) esophageal endoscopic findings including linear furrows and white exudates. Thereby, we demonstrate that our sensitization and oral challenge protocol not only induces the underlying immune markers but also the micro- and macro-pathological hallmarks of human EoE. This swine model for EoE represents a novel relevant large animal model that can drive translational biomedical research to develop urgently needed treatment strategies for EoE

    Target actionability review to evaluate CDK4/6 as a therapeutic target in paediatric solid and brain tumours

    Get PDF
    BACKGROUND: Childhood cancer is still a leading cause of death around the world. To improve outcomes, there is an urgent need for tailored treatment. The systematic evaluation of existing preclinical data can provide an overview of what is known and identify gaps in the current knowledge. Here, we applied the target actionability review (TAR) methodology to assess the strength and weaknesses of available scientific literature on CDK4/6 as a therapeutic target in paediatric solid and brain tumours by structured critical appraisal. METHODS: Using relevant search terms in PubMed, a list of original publications investigating CDK4/6 in paediatric solid tumour types was identified based on relevancy criteria. Each publication was annotated for the tumour type and categorised into separate proof-of-concept (PoC) data modules. Based on rubrics, quality and experimental outcomes were scored independently by two reviewers. A third reviewer evaluated and adjudicated score discrepancies. Scores for each PoC module were averaged for each tumour type and visualised in a heatmap matrix in the publicly available R2 data portal. RESULTS AND CONCLUSIONS: This CDK4/6 TAR, generated by analysis of 151 data entries from 71 publications, showed frequent genomic aberrations of CDK4/6 in rhabdomyosarcoma, osteosarcoma, high-grade glioma, medulloblastoma, and neuroblastoma. However, a clear correlation between CDK4/6 aberrations and compound efficacy is not coming forth from the literature. Our analysis indicates that several paediatric indications would need (further) preclinical evaluation to allow for better recommendations, especially regarding the dependence of tumours on CDK4/6, predictive biomarkers, resistance mechanisms, and combination strategies. Nevertheless, our TAR heatmap provides support for the relevance of CDK4/6 inhibition in Ewing sarcoma, medulloblastoma, malignant peripheral nerve sheath tumour and to a lesser extent neuroblastoma, rhabdomyosarcoma, rhabdoid tumour and high-grade glioma. The interactive heatmap is accessible through R2 [r2platform.com/TAR/CDK4_6]

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Mammographic density and risk of breast cancer by age and tumor characteristics

    Get PDF
    Introduction: Understanding whether mammographic density (MD) is associated with all breast tumor subtypes and whether the strength of association varies by age is important for utilizing MD in risk models. Methods: Data were pooled from six studies including 3414 women with breast cancer and 7199 without who underwent screening mammography. Percent MD was assessed from digitized film-screen mammograms using a computer-assisted threshold technique. We used polytomous logistic regression to calculate breast cancer odds according to tumor type, histopathological characteristics, and receptor (estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor (HER2)) status by age (51%) versus average density (11-25%). Women ages 2.1 cm) versus small tumors and positive versus negative lymph node status (P’s < 0.01). For women ages <55 years, there was a stronger association of MD with ER-negative breast cancer than ER-positive tumors compared to women ages 55–64 and ≥65 years (Page-interaction = 0.04). MD was positively associated with both HER2-negative and HER2-positive tumors within each age group. Conclusion: MD is strongly associated with all breast cancer subtypes, but particularly tumors of large size and positive lymph nodes across all ages, and ER-negative status among women ages <55 years, suggesting high MD may play an important role in tumor aggressiveness, especially in younger women

    Conscious uncoupling between FANCI and FANCD2 in DNA repair

    Get PDF
    The Fanconi anemia (FA)-BRCA pathway mediates repair of DNA interstrand crosslinks. The FA core complex, a multi-subunit ubiquitin ligase, participates in the detection of DNA lesions and monoubiquitinates two downstream FA proteins, FANCD2 and FANCI (or the ID complex). However, the regulation of the FA core complex itself is poorly understood. Here we show that the FA core complex proteins are recruited to sites of DNA damage and form nuclear foci in S and G2 phases of the cell cycle. ATR kinase activity, an intact FA core complex and FANCM-FAAP24 were crucial for this recruitment. Surprisingly, FANCI, but not its partner FANCD2, was needed for efficient FA core complex foci formation. Monoubiquitination or ATR-dependent phosphorylation of FANCI were not required for the FA core complex recruitment, but FANCI deubiquitination by USP1 was. Additionally, BRCA1 was required for efficient FA core complex foci formation. These findings indicate that FANCI functions upstream of FA core complex recruitment independently of FANCD2, and alter the current view of the FA-BRCA pathway

    Genetic variation in the estrogen metabolic pathway and mammographic density as an intermediate phenotype of breast cancer

    Get PDF
    Introduction: Several studies have examined the effect of genetic variants in genes involved in the estrogen metabolic pathway on mammographic density, but the number of loci studied and the sample sizes evaluated have been small and pathways have not been evaluated comprehensively. In this study, we evaluate the association between mammographic density and genetic variants of the estrogen metabolic pathway. Methods: A total of 239 SNPs in 34 estrogen metabolic genes were studied in 1,731 Swedish women who participated in a breast cancer case-control study, of which 891 were cases and 840 were controls. Film mammograms of the medio-lateral oblique view were digitalized and the software Cumulus was used for computer-assisted semi-automated thresholding of mammographic density. Generalized linear models controlling for possible confounders were used to evaluate the effects of SNPs on mammographic density. Results found to be nominally significant were examined in two independent populations. The admixture maximum likelihood-based global test was performed to evaluate the cumulative effect from multiple SNPs within the whole metabolic pathway and three subpathways for androgen synthesis, androgen-to-estrogen conversion and estrogen removal. Results: Genetic variants of genes involved in estrogen metabolism exhibited no appreciable effect on mammographic density. None of the nominally significant findings were validated. In addition, global analyses on the overall estrogen metabolic pathway and its subpathways did not yield statistically significant results. Conclusions: Overall, there is no conclusive evidence that genetic variants in genes involved in the estrogen metabolic pathway are associated with mammographic density in postmenopausal women

    No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing.

    Get PDF
    BACKGROUND: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. METHODS: We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. RESULTS: The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). CONCLUSIONS: These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels.The COGS project is funded through a European Commission's Seventh Framework Programme grant (agreement number 223175 - HEALTH-F2-2009-223175). BCAC is funded by Cancer Research UK [C1287/A10118, C1287/A12014] and by the European Community´s Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009-223175) (COGS). Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 16 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defense (W81XWH-10-1- 0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. This study made use of data generated by the Wellcome Trust Case Control consortium. Funding for the project was provided by the Wellcome Trust under award 076113. The results published here are in part based upon data generated by The Cancer Genome Atlas Project established by the National Cancer Institute and National Human Genome Research Institute.This is the author accepted manuscript. The final version is available from BMJ Group at http://dx.doi.org/10.1136/jmedgenet-2015-103529

    A Molecular Signature of Proteinuria in Glomerulonephritis

    Get PDF
    Proteinuria is the most important predictor of outcome in glomerulonephritis and experimental data suggest that the tubular cell response to proteinuria is an important determinant of progressive fibrosis in the kidney. However, it is unclear whether proteinuria is a marker of disease severity or has a direct effect on tubular cells in the kidneys of patients with glomerulonephritis. Accordingly we studied an in vitro model of proteinuria, and identified 231 “albumin-regulated genes” differentially expressed by primary human kidney tubular epithelial cells exposed to albumin. We translated these findings to human disease by studying mRNA levels of these genes in the tubulo-interstitial compartment of kidney biopsies from patients with IgA nephropathy using microarrays. Biopsies from patients with IgAN (n = 25) could be distinguished from those of control subjects (n = 6) based solely upon the expression of these 231 “albumin-regulated genes.” The expression of an 11-transcript subset related to the degree of proteinuria, and this 11-mRNA subset was also sufficient to distinguish biopsies of subjects with IgAN from control biopsies. We tested if these findings could be extrapolated to other proteinuric diseases beyond IgAN and found that all forms of primary glomerulonephritis (n = 33) can be distinguished from controls (n = 21) based solely on the expression levels of these 11 genes derived from our in vitro proteinuria model. Pathway analysis suggests common regulatory elements shared by these 11 transcripts. In conclusion, we have identified an albumin-regulated 11-gene signature shared between all forms of primary glomerulonephritis. Our findings support the hypothesis that albuminuria may directly promote injury in the tubulo-interstitial compartment of the kidney in patients with glomerulonephritis
    corecore