33 research outputs found
Phylogenetic relationships of the simulium esskose and simulium ceylonicum species groups (Diptera: Simuliidae) in Malaysia
Associations of autozygosity with a broad range of human phenotypes
In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding
SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination
BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript
How to analyze experiments using factorial designs with pattern classifiers and derive bootstrap based confidence and tolerance intervals
SENSOR/ACTUATOR EQUATIONS FOR CURVED PIEZOELECTRIC FIBERS AND VIBRATION CONTROL OF COMPOSITE BEAMS USING FIBER MODAL ACTUATORS/SENSORS
Peptidomic analysis of healthy and subclinically mastitic bovine milk
A variety of proteases release hundreds of endogenous peptide fragments from intact bovine milk proteins. Mass spectrometry-based peptidomics allows for high throughput sequence assignment of a large number of these peptides. Mastitis is known to result in increased protease activity in the mammary gland. Therefore, we hypothesized that subclinically mastitic milks would contain higher concentrations of released peptides. In this work, milks were sampled from three cows and, for each, one healthy and one subclinically mastitic teat were sampled for milk. Peptides were analyzed by nano-liquid chromatography quadrupole time of flight tandem mass spectrometry and identified with database searching. In total, 682 peptides were identified. The total number of released peptides increased 146% from healthy to subclinically mastitic milks (p <0.05), and the total abundance of released peptides also increased significantly (p <0.05). Bioinformatic analysis of enzyme cleavage revealed increases in activity of cathepsin D and elastase (p <0.05) with subclinical mastitis
