42 research outputs found

    APOA5 Q97X Mutation Identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family

    Get PDF
    BACKGROUND: Severe hypertriglyceridemia (HTG) has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis) were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation. The aim of this study was to determine the genetic locus responsible for the severe HTG in this family. METHODS: We carried out a genome-wide linkage study with nearly 300,000 biallelic markers (Illumina Human CytoSNP-12 panel). Using the homozygosity mapping strategy, we searched for chromosome regions with excess of homozygous genotypes in the affected cases compared to non-affected relatives. RESULTS: A large homozygous segment was found in the long arm of chromosome 11, with more than 2,500 consecutive homozygous SNP shared by the proband with her affected sister, and containing the APOA5/A4/C3/A1 cluster. Direct sequencing of the APOA5 gene revealed a known homozygous nonsense Q97X mutation (p.Gln97Ter) found in both affected sisters but not in non-affected relatives nor in a sample of unrelated controls. CONCLUSION: The Q97X mutation of the APOA5 gene in homozygous status is responsible for the severe hypertriglyceridemia in this family. We have shown that homozygosity mapping correctly pinpointed the genomic region containing the gene responsible for severe hypertriglyceridemia in this consanguineous Chilean famil

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    Get PDF
    We present the results of the first observations of the emission line galaxies (ELG) of the extended Baryon Oscillation Spectroscopic Survey. From the total 9000 targets, 4600 have been selected from the Dark Energy Survey (DES). In this subsample, the total success rate for redshifts between 0.6 and 1.2 is 71 and 68 per cent for a bright and a faint samples, respectively, including redshifts measured from a single strong emission line. The mean redshift is 0.80 for the bright and 0.87 for the faint sample, while the percentage of unknown redshifts is 15 and 13 per cent, respectively. In both cases, the star contamination is lower than 2 per cent. We evaluate how well the ELG redshifts are measured using the target selection photometry and validating with the spectroscopic redshifts measured by eBOSS. We explore different techniques to reduce the photometric redshift outliers fraction with a comparison between the template fitting, the neural networks and the random forest methods. Finally, we study the clustering properties of the DES SVA1 ELG samples. We select only the most secure spectroscopic redshift in the redshift range 0.6 < z < 1.2, leading to a mean redshift for the bright and faint sample of 0.85 and 0.90, respectively. We measure the projected angular correlation function and obtain a galaxy bias averaging on scales from 1 to 10 Mpc h−1 of 1.58 ± 0.10 for the bright sample and 1.65 ± 0.12 for the faint sample. These values are representative of a galaxy population with MB − log(h) < −20.5, in agreement with what we measure by fitting galaxy templates to the photometric data

    Käytännön kosteikkosuunnittelu

    Get PDF
    Maatalouden vesiensuojelua edistetään monin tavoin. Ravinteita ja eroosioainesta sisältäviä valumavesiä pyritään puhdistamaan erilaisissa kosteikoissa. Tämä opas on kirjoitettu avuksi pienimuotoisten kosteikkojen perustamiseen. Oppaassa esitetään käytännönläheisesti kosteikon toteuttamisen eri vaiheet paikan valinnasta suunnitteluun ja rakentamiseen. Vuonna 2010 julkaistun painoksen tiedot on saatettu ajantasalle. Julkaisu on toteutettu osana Tehoa maatalouden vesiensuojeluun (TEHO) -hanketta ja päivitetty TEHO Plus -hankkeen toimesta. Oppaan toivotaan lisäävän kiinnostusta kosteikkojen suunnitteluun ja edelleen niiden rakentamiseen

    Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    Get PDF
    We present the results of the first observations of the emission line galaxies (ELG) of the extended Baryon Oscillation Spectroscopic Survey. From the total 9000 targets, 4600 have been selected from the Dark Energy Survey (DES). In this subsample, the total success rate for redshifts between 0.6 and 1.2 is 71 and 68 per cent for a bright and a faint samples, respectively, including redshifts measured from a single strong emission line. The mean redshift is 0.80 for the bright and 0.87 for the faint sample, while the percentage of unknown redshifts is 15 and 13 per cent, respectively. In both cases, the star contamination is lower than 2 per cent. We evaluate how well the ELG redshifts are measured using the target selection photometry and validating with the spectroscopic redshifts measured by eBOSS. We explore different techniques to reduce the photometric redshift outliers fraction with a comparison between the template fitting, the neural networks and the random forest methods. Finally, we study the clustering properties of the DES SVA1 ELG samples. We select only the most secure spectroscopic redshift in the redshift range 0.6 < z < 1.2, leading to a mean redshift for the bright and faint sample of 0.85 and 0.90, respectively. We measure the projected angular correlation function and obtain a galaxy bias averaging on scales from 1 to 10 Mpc h−1 of 1.58 ± 0.10 for the bright sample and 1.65 ± 0.12 for the faint sample. These values are representative of a galaxy population with MB − log(h) < −20.5, in agreement with what we measure by fitting galaxy templates to the photometric data

    Natural history notes

    No full text

    Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory

    No full text
    corecore