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ABSTRACT

We present the results of the first observations of the emission line galaxies (ELG) of the
extended Baryon Oscillation Spectroscopic Survey. From the total 9000 targets, 4600 have
been selected from the Dark Energy Survey (DES). In this subsample, the total success rate for
redshifts between 0.6 and 1.2 is 71 and 68 per cent for a bright and a faint samples, respectively,
including redshifts measured from a single strong emission line. The mean redshift is 0.80
for the bright and 0.87 for the faint sample, while the percentage of unknown redshifts is 15
and 13 per cent, respectively. In both cases, the star contamination is lower than 2 per cent.
We evaluate how well the ELG redshifts are measured using the target selection photometry
and validating with the spectroscopic redshifts measured by eBOSS. We explore different
techniques to reduce the photometric redshift outliers fraction with a comparison between
the template fitting, the neural networks and the random forest methods. Finally, we study
the clustering properties of the DES SVA1 ELG samples. We select only the most secure
spectroscopic redshift in the redshift range 0.6 < z < 1.2, leading to a mean redshift for
the bright and faint sample of 0.85 and 0.90, respectively. We measure the projected angular
correlation function and obtain a galaxy bias averaging on scales from 1 to 10 Mpc h~! of
1.58 + 0.10 for the bright sample and 1.65 & 0.12 for the faint sample. These values are
representative of a galaxy population with M — log(h) < —20.5, in agreement with what we
measure by fitting galaxy templates to the photometric data.

Key words: surveys—cosmology: observations.

1 INTRODUCTION

* E-mail: s jouvel @ucl.ac.uk With the development of new technologies and instruments, we can
t Severo Ochoa IFT Fellow. now design wider and deeper surveys with performances several
1 Hubble Fellow.

© 2017 The Authors

Downl oaded fPélrtﬁ)IH}P%%b}f aQ:’a(\fPerrg ylgil}/&rég% }r?‘rru?%%f)ar\]rpf"?%f SESFPFa%P»‘/X%ﬁ%?@f‘ﬂ‘?‘éﬁ%b%&‘ﬁ%t onetric-redshifts-and-cl ustering-of-em ssion
by ?(;i \C/gsibdadgofgderal do Rio Grande do Sul user
on ober


mailto:s.jouvel@ucl.ac.uk

2772  S. Jouvel et al.

orders of magnitudes greater than 20 yr ago. Classically, these sur-
veys fall into two categories: spectroscopic and photometric redshift
surveys. Both have advantages and disadvantages and they mutually
benefit from each other. Some observables are only accessible with
one design, for example, weak lensing can only be measured with
photometric data, likewise, spectroscopic surveys need photomet-
ric catalogues to create the target selection and photometric surveys
need spectroscopic surveys to obtain distances. Both aspects are
subjects of this paper.

The Dark Energy Spectroscopic Instrument (DESI, Schlegel
et al. 2011) and the extended Baryon Oscillation Spectroscopic
Survey (eBOSS)' (Dawson et al. 2016) are a new generation of
surveys using the latest technologies in the field of spectroscopy.
Using these new instruments allow to cover large sky areas selecting
higher redshift and fainter targets than previous surveys, increas-
ing the statistical confidence in the measurement of cosmological
parameters.

One of the galaxy targets of these surveys are emission line
galaxies (ELG). Previously, several papers have studied the survey
design needed to target ELGs, such as Comparat et al. (2013);
Adelberger et al. (2004), and efficient ELG samples have been
compiled by the Deep Extragalactic Evolutionary Probe 2 (DEEP2,
Newman et al. 2013), the VIMOS Public Extragalactic Redshift
Survey (VIPERS, Garilli et al. 2014) and The Wigglez Dark Energy
Survey (DES, Parkinson et al. 2012).

None the less, in order to further optimize the selection efficiency,
different techniques have been studied. Abdalla et al. (2008) showed
that a neural network can pick up strong emission lines from the
broad-band photometry of DEEP2 and the Sloan Digital Sky Survey
(SDSS) data release of Abazajian et al. (2004). This optimization
method was later applied to a DESI-like survey in Jouvel et al.
(2014a). They find that one can reach a higher success rate if targets
are picked using a neural network algorithm, rather than the classical
selection in colour space. Likewise, a related work uses a Fisher
discriminant method to investigate improvements in the eBOSS
target selections (Raichoor et al. 2016).

On the photometric side, one of the main limitations in ongoing
and upcoming photometric surveys is the access to the radial di-
mension, the redshift (Newman et al. 2015). Surveys such as the
Dark Energy Survey?, the Large Synoptic Survey Telescope (Ivezic
et al. 2008), Euclid (Laureijs et al. 2011), use between 4 and 8 pho-
tometric broad-bands. Broad-band photometric redshifts (z,,) have
an accuracy limited by the filter resolution (Jouvel et al. 2011). In
the optimal case of a space-based survey with 16 filters, covering
from UV to infrared, photometric redshifts reach a mean precision
of 0.03 (Jouvel et al. 2014b). Depending on the survey configuration
such as ground-based or space-based, number of broad-band filters,
pixel size and exposure time, the photometric redshifts accuracy
will vary. For example, DES will reach a precision of 0.08 (Sanchez
et al. 2014), which will vary, depending on the galaxy population
considered.

If photometric redshifts are used to measure galaxy clustering,
then the resulting estimate of the dark matter power spectrum be-
comes biased because the density fluctuation traced by galaxies is
smoothed by the photometric redshift error. The bluest galaxies have
higher degeneracies in colour space, which misplace high-redshift
galaxies at low redshift, and conversely. Dark Energy Equation of
State constraints, which rely on photometric redshift information

Uhttps://www.sdss3.org/future/eboss.php
2 http://www.darkenergysurvey.org/

(like weak-lensing and cluster mass function estimates) is severely
affected by (unaccounted) outliers (Bernstein & Huterer 2010).

In this paper, we present the characteristics of the emission line
galaxy samples observed with eBOSS. We designed different target
selections based on SDSS (Ahn et al. 2014), the South Galactic
Cap u-band Sky Survey (SCUSS, Jia et al. 2014) and DES. These
data are part of the e BOSS ELG target selection definition effort,
undergone in 2014 October. In particular, we focus our attention in
the study of the target selection defined with DES only.

We investigate the precision of DES to measure ELG redshifts,
and study possible ways to reduce the outliers fraction. Finally, we
measure the clustering properties of the spectroscopically confirmed
ELGs, assessing the properties of the galaxy population, based on
two different target selection proposals.

In Section 2, we present the ELG target selections based on DES
data. In Section 3, we use the eBOSS spectroscopic redshifts to
test DES photometric redshifts and study the outliers fraction. In
Section 4, we study the clustering properties of the spectroscopic
samples. Finally, we present the conclusions in Section 5.

We highlight two companion papers: Comparat et al. (2016),
which explains the observation strategy and the automated redshift
assignment in ELGs and Delubac et al. (2017), which studies the
SDSS-based photometric target selections.

2 THE eBOSS ELG SAMPLE FROM DES
PHOTOMETRY

2.1 eBOSS ELG survey strategy

eBOSS is a spectroscopic survey using the BOSS spectrograph
(Smee et al. 2013) at the Apache Point Observatory. It will cover
7500 deg? in a 6-yr period. eBOSS aims at measuring the baryon
acoustic oscillation features at redshift higher than 0.6, extend-
ing the first measurement from SDSS at lower redshift (Percival
etal. 2010). eBOSS will use a mixture of targets to have a measure-
ment at z ~ 0.6 using luminous red galaxies (LRG), z ~ 1 using ELG,
quasars between redshift one and two (Leistedt & Peiris 2014), and
Ly absorption quasars at redshift higher than two (Font-Ribera
etal. 2014). The LRG and quasars survey started in 2014 July while
the ELG survey will start in 2016 and cover 1500 deg? only with
a higher density of targets. The eBOSS ELG survey plans to use
the DECaLS? photometry to select its targets on ~1000 deg?. In
this paper, we use DES photometry to look at possible optimization
of the target selection: reach fainter targets at higher redshift and
lower contamination from low redshift galaxies. This paper investi-
gates the target density, redshift range from the DES SVA1-eBOSS
observations and systematics from a DES target selection based on
year one data. We study the systematics of using DES year one data
since the quality of the data reduction is higher than in SVA1. SVA1
data were taken for quality tests and calibration purposes (see Figs 2
and 5).

2.2 Des science verification data

DES is an ongoing photometric ground-based galaxy survey that
started in autumn 2013. DES uses the brand new 2.2 deg? DECam
instrument (Flaugher et al. 2015) mounted on the 4 m Victor M.

3 legacysurvey.org
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Figure 1. Footprints of DES, BOSS and eBOSS. Coordinates are RA and Dec in deg.

Blanco Telescope located at the Cerro Tololo Inter-American Ob-
servatory (CTIO) in Chile. It will cover 5000 deg? after completion
in five optical broad-bands observing the southern sky. DES will
use cosmic shear, cluster counts, large-scale structure measurements
and supernovae type la to reach very competitive measurement of
the Universe growth rate and dark energy.

The first phase of the DES survey consisted of various tests
and improvements in the data acquisition, instrument calibration
and data processing, which resulted in a first well-defined source
catalogue, the Science verification data, hereafter SVA1. Scientific
results from Bonnett et al. (2016); Rozo et al. (2016); Crocce et al.
(2016); Banerji et al. (2015); Sanchez et al. (2014); Melchior et al.
(2016); Dark Energy Survey Collaboration et al. (2016) and others
show the very good quality of the SVA1 data. In Fig. 1, we show
the footprint of the DES, BOSS and eBOSS surveys along with the
DES year one data, and the SVA1 data.

2.3 Photometric redshift of DES SVA1

Sanchez et al. (2014) studied the photometric redshift of SVA1
galaxies. In our paper, we use two of the codes presented in this
paper: ANNz2 (Sadeh, Abdalla & Lahav 2016) and LE PHARE (Ilbert
et al. 2006, 2009). ANNZ2 is a machine learning code that includes
several algorithms: neural networks, boosted decision trees and
k-nearest neighbours, while LE PHARE is a template fitting method.
Both produce single point estimates, as well as probability distribu-
tions for their photometric redshifts. ANNZ2 also includes a weight-
ing algorithm during the training procedure, taking into account the
differences in magnitude, colours and redshifts between the pho-
tometric and spectroscopic sample (Lima et al. 2008). In Sédnchez
et al. (2014), the spectroscopic sample used to train and validate
photometric redshifts contains 9000 spectroscopic redshifts (zp)
from various spectroscopic surveys compiled from the literature.
We also use the same set-up to train and obtain the ELG redshifts.

We highlight that eBOSS redshifts are not included in the spectro-
scopic redshifts used to train our data.

For annz2, we actually use the photo-z estimates presented in
Sanchez et al. (2014), while for LE PHARE, the set up is identical,
but with different zero-point calibrations. In our case, we compute
zero-point corrections independently for the ELG sample and ap-
ply them to the LE PHARE template fitting procedure. The template
library used, both in Sanchez et al. (2014) and here, is the template
library developed for the COSMOS observations (Ilbert et al. 2009).
It has 31 templates, from elliptical to starburst galaxies. We allow
for internal extinction for the bluest templates, using the Calzetti
law (Calzetti et al. 2000) with extinction values of E(B — V) =
[0.1, 0.2, 0.3]. We also use a redshift prior that is calibrated with
the Vimos VLT Deep Survey (VVDS) observations (Le Fevre
et al. 2005). DES observations have the same depth as VVDS that
justify the use of this prior.

2.4 eBOSS ELG spectroscopic targets

To define the target selection of the eBOSS ELG sample, we used an
area of 9.2 deg” from the SVA1 data, overlapping with eBOSS. Fig. 2
shows the depth over the 9.2 deg? SVA footprint in g5z used for the
eBOSS observations. Limiting magnitudes are defined by the flux
in a 2 arcsec aperture above 100, computed from the DES images
using the MANGLE software (Swanson et al. 2012) (Appendix B).
The eBOSS fields selected for the ELG target selection cam-
paign were chosen to overlap with Canada-France-Hawaii Tele-
scope Legacy Survey W1 field (CFHTLS-W1). CFHTLS has four
wide and four deep 1 deg? fields in u*,g’,r,i',z’ bands. The W1 field
is the biggest of the wide fields with 72 deg® and 80 per cent
completeness depth of i/ < 24.5. Coupon et al. (2009) com-
puted the CFHTLS photometric redshift accurate to 3—4 per cent
up to i’ < 22.5 calibrated with VVDS (Le Fevre et al. 2005),
DEEP2 (Newman et al. 2013) and zCOSMOS (Lilly et al. 2007)
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Figure 2. Depth of the g,r,z bands of the DES Science Verification data in the 9.2 deg? of the eBOSS observations. The depth has been computed with the
MANGLE software and corresponds to a 10c magnitude in an aperture of 2 arcsec; see Appendix B.

Table 1. The three eBOSS ELG selections. The SDSS-SCUSS selection is a mix of two different selections. We
use an SDSS only selection with g7z bands and an SDSS-SCUSS selection using the # band from the SCUSS
survey and g,r,z bands from SDSS. eg, er, ei, ez are photometric uncertainties of the g,r,i,z bands. Magnitudes
are the SEXTRACTOR (Bertin & Arnouts 1996) detmodel DES magnitudes for the bright and faint selections and
SDSS/SCUSS model magnitudes for the SDSS-SCUSS selections. The different elements of a selection in a

column are connected by the logical operator ‘and’. SEXTRACTOR parameters are defined in Appendix A.

DES bright DES faint SDSS-SCUSS
205 <g <228 g > 2045 eg <06&er<1&ei<04
—07<g—-r<09 r<22.8 20<g <23 21 < g <225
O<r—z<?2 028 <r—z< 158 r<22.5 r<225
r—z>04x(g—r)+04 g—r<1.15(r—2z)—02 i<21.6 i<21.6
g—r<145—1.15x%(r — 2) 21 <U<?225 g—r<0.8
r—i>0.7 r—i>0.8

i—u>-35%x(r—1i)+0.7

spectroscopic surveys. These data are publicly available. This field
has also been imaged by the SDSS survey.* The photometry from
SDSS is a 11k deg? with 95 per cent completeness depth of u, g, r,
i,z7=122.0,22.2,22.2,21.3, 20.5 (Abazajian et al. 2009).

We used three tiles from the SVA1 data on CFHTLS-W1 that we
observed in eight eBOSS plates. With a 1 h exposure we reached a
total of 5705 spectra. We investigated three different target selection
schemes, see Table 1.

SDSS-SCUSS represent two distinct target selections, one us-
ing SDSS data alone and another combining SDSS with SCUSS
photometry (Table 1). These targets are distributed over 51 deg?.
DES bright and faint targets are distributed over 9.2 deg”. The DES
faint selection has been optimized to reach redshifts between 0.7
and 1.5. This latter selection has been designed for the DESI sur-
vey and reaches higher redshifts galaxies than eBOSS is aiming
at (Schlegel et al. 2011). eBOSS is aiming at galaxies between
a redshift of 0.6 and 1.2. Higher redshifts will be explored us-
ing AGNSs. This papers studies the DES ELG target selections for
eBOSS. The two other selections using SDSS and SCUSS data
will be presented in our companion papers: Comparat et al. (2016),
Delubac et al. (2017) and Raichoor et al. (2016). On the DES se-
lections, we do not apply any star—galaxy separation. We do not
expect much contamination by stars when designing ELG target
selection as shown in Adelberger et al. (2004). We remove the
fake detections by applying selection criteria in g,r,z DES bands of
MAG_APER — MAG_.DETMODEL < 2, see Appendix A for
parameters explanations.

4 http://www.sdss.org/data

Right-hand panel of Fig. 3 shows the photometric redshifts distri-
bution in cyan solid line of the DES SVA1 galaxies in the 9.2 deg”
field used to optimize the eBOSS target selections. The cyan solid
line shows all galaxies at g < 23 with a photometric redshift be-
tween 0.5 and 1.5. We show two of the DES based target selections in
dash—dotted blue and dashed green lines. The red dotted line shows
the SDSS-based selection that we name SDSS-SCUSS, detailed in
the next section. The magenta triangles show the outliers. We note
that there is colour space where there seem to be a higher percent-
age of outliers, especially for the DESI selection. In Section 3.3,
we present a first attempt to identify regions in colour—colour space
with a higher percentage of outliers.

2.5 eBOSS ELG spectroscopic results

The eBOSS ELG observations are presented in Table 2. We show the
number of targets selected and observed in the eBOSS observations.
SDSS-SCUSS do not show the total number of targets observed
but the one for which we find a match with DES photometry. For
representative statistics about the SDSS and SCUSS selections,
please refer to Comparat et al. (2016), Delubac et al. (2017) and
Raichoor et al. (2016). We show the percentage of spectroscopic
redshifts with a secure redshift ‘secure’ for which we find at least
two lines with a low signal-to-noise detection, or one line and a
100 continuum detection for the redshift measurement. The ‘1line’
were measured from a single line with at least 3o detection without
continuum information. They have a higher failure rate since a line
confusion can happen between [H«] and [O u]. The ‘unknown’
are spectra for which we could not find a redshift. ‘0.6 < z < 1.2’
shows the percentage of targets with secure redshifts in the desired
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Figure 3. From the left, the first two panels show the two DES-based ELG selections while the third panel shows an SDSS-SCUSS-based ELG selection
using the eBOSS observations. The magenta triangles labelled ‘cata’ show catastrophic redshifts as defined in Section 3. The furthest right-hand panel shows
the photometric redshift distribution of the eBOSS targets selected with the DES SVA1. Photo-z for the DES SVAI data are computed using aNNz2. For
SDSS-SCUSS selection, we used CFHTLS photo-z, which we matched with SDSS photometry. The median uncertainties on g — r and r — z colours for the
different selections are less than 4 per cent.

Table 2. Number of targets, efficiency and spectroscopic success rate for the three eBOSS selections. The last column shows the
overlap between the DES bright and faint selections. Note that the magnitude selections are carried out in the DES g band.

Magnitude selection DES bright DES faint SDSS-SCUSS DES brightNfaint
Selected 953 445 - 220
Dens. selected ( deg?) 69 32 - 24
Observed 557 254 206 199
Secure ( per cent) 88.0 85.0 77.2 87.4
1line ( per cent) 1.3 3.5 1.0 2.5
205<g<22 Unknown ( per cent) 10.8 11.4 21.8 10.1
0.6 < z < 1.2( per cent) 60.9 66.5 58.3 71.4
0.6 < z < 1.2%( per cent) 61.4 67.7 58.3 72.4
z 0.68 0.8 0.65 0.8
([On]) 1.8 2.54 3.91 2.65
Nstars 21 13 25 5
Selected 6762 7838 - 2158
Dens. selected ( degz) 491 570 - 239
Observed 3103 2158 1049 1274
Secure ( per cent) 70.6 64.0 74.5 67.1
1line ( per cent) 13.4 22.3 4.6 21.3
22 <g<23 Unknown ( per cent) 16.0 13.6 21.0 11.6
0.6 < z < 1.2( per cent) 64.8 55.7 62.7 60.4
0.6 < z < 1.2%( per cent) 73.5 68.1 66.0 72.0
H 0.83 0.88 0.71 0.9
([O 1) 1.24 1.47 0.97 1.71
Nstars 51 35 24 16
Selected 7716 8283 - 2378
Dens. selected ( deg?) 561 602 - 264
Observed 3660 2412 1255 1473
Secure ( per cent) 73.3 66.3 74.9 69.9
1line ( per cent) 11.6 20.4 4 18.7
205 <g<23 Unknown ( per cent) 15.2 13.4 21.1 11.4
0.6 < z < 1.2 ( per cent) 64.2 56.8 62 61.8
0.6 < z < 1.2%( per cent) 71.6 68.0 64.7 72.0
z 0.8 0.87 0.7 0.88
([O 1) 1.34 1.61 1.47 1.87
Nstars 72 48 49 21

and finds an agreement with VIPERS at less than 1 per cent. We
conclude that eBOSS redshift measurement are very reliable.

The highest success rate is achieved by the DES bright selection
with 72 per cent of very secure redshift, 12 per cent of one line
detected redshift and 15 per cent of non-identified redshift. DES

redshift range: 0.6 < z < 1.2. ‘0.6 < z < 1.2%’ includes the ‘1line’
Zsp in the percentage of targets with secure redshifts. Z and ([O n])
are respectively the mean eBOSS zy, and [O u] flux using secure
redshifts. Nstars is the number of stars. Comparat et al. (2016) gives
a full detailed study of the eBOSS redshift measurement pipeline
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faint selection has a slightly lower success rate of 68 per cent of
very secure redshifts including 20 per cent of one line z,. Table 2
shows the success rate as a function of DES g-band magnitude. The
DES faint selection has been designed to target fainter and higher
redshift galaxies that explains the slightly lower success rate when
compared to DES bright selection. In Section 2.6, we apply the DES
bright selection to the year one DES data and show the results of
our systematics studies.

2.6 eBOSS ELG systematics

DES and eBOSS footprint have an overlap of 500 deg® in the
Stripe82 region. The 500 deg” of DES targets will yield a minimum
number of 60 000 eBOSS spectra over Stripe82. The early release
of the DES year one data, hereafter Y1Al, is on Stripe82 with
152 deg®. We use Y1ALI data to look at possible systematics from
the photometric target selections. In order to have reliable measure-
ment of the galaxy power spectrum, eBOSS needs to have a density
variation lower than 15 per cent over the survey area as discussed
in Ross et al. (2012) and Dawson et al. (2016). We use HEALPIX’
to produce maps of the eBOSS galaxy target selection and survey
variables that have the biggest impact on the power spectrum mea-
surement such as stellar density, Galactic extinction, survey depth,
airmass (Ross et al. 2012). We used the DES bright selection for the
galaxy density maps using a pixelization of 6.87 arcmin® (NSIDE =
512). The mean number density of DES bright galaxies is 737
gal deg=? with variations between 19 and 2690 gal deg~2. In Fig. 4,
we show the galaxy density fluctuation as a function of the stellar
density using criteria defined in Section 2.2. We are aiming to look
for possible correlations between variation in the stellar density and
variation in the density of galaxies in the eBOSS bright selection.
The number density of stars varies between 76 and 15 000 with a
mean of 5890 stars deg 2.

We compute the Spearman correlation coefficient, which is the
correlation of the Pearson’s coefficient between two ranked vari-
ables. Pearson’s coefficient is a measure of the linear correlation of
two variables. We choose to show the Spearman coefficient since it
is more robust to outliers. We note that the Pearson and Spearman’s
coefficients give very similar results on our data. Spearman’s coef-
ficient vary between —1 and 1, which mean a very high correlation.
A value of zero means no correlation between two variables. We
find a value of 0.31 to Spearman’s correlation between the stellar
density and the galaxy density in the version of the DES data we
are using (Y1Al-copper). This is a non-negligible correlation. We
expect this correlation to decrease in future data releases and do not
investigate this further at the present time.

Similarly, in Fig. D1, we looked at the variation of target density
as a function of depth, Galactic extinction and airmass across the
Y1A1 Stripe82. The depth map in g,r.z, bands of Y1Al data is
shown in Fig. 5. For the g,r,z depth, we find values of —0.04,
0.01, 0.07 for the Spearman’s coefficients. For airmass in g,r.z
bands, we find values of —0.03, —0.09, —0.03 for the Spearman’s
coefficients. For the Galactic extinction in g,r,z bands, we find a
value of 0.1. There are no obvious correlations between the densities
of DES bright galaxies and airmass, Galactic extinction or depth. We
conclude that our Y1A1 target selection will be within requirement
across the Stripe82 DES footprint.

5 http://healpy.readthedocs.org/en/latest/
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Figure 4. Density fluctuation of galaxies as a function of the stellar surface
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target selection. The error weighted mean galaxy density fluctuation is com-
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we used as weight in the mean calculation.
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Figure S. Depth of the DES year one data on Stripe 82 region in the g,r.z
bands.

3 IMPROVING DES PHOTO-Z USING EBOSS
SPEC-Z

3.1 Photo-z of the three eBOSS selections

In this section, we examine the photometric redshifts (zpn) of the
eBOSS ELG sample that were obtained by matching the positions
of the ANNZ2 photometric redshifts catalogue from Sanchez et al.
(2014) with positions of eBOSS targets with spectroscopic redshifts.
In Fig. 6, we compare the matched photometric redshifts for the
three eBOSS selections, with the secure spectroscopic redshifts. We
stress that in this work we are considering only these DES galaxies
that are cross-matched with the eBOSS emission line galaxy sample.
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Figure 6. Comparison of photometric to spectroscopic redshifts for the three eBOSS target selections. The top row shows the photometric redshifts using
ANNZ2, whilst the bottom row show the photometric redshifts obtained from LE PHARE. Each code was run on the five-band DES SVA1 photometry. The dashed
line for the top and bottom panel shows the expected DES accuracy of |zpn — zsp| = o pEs(1 + zsp) where opgs = 0.12.

As such we are considering only a subset of the DES population.
An examination of the full DES population is presented in Sdnchez
et al. (2014). Note that the DES galaxies in the subset that we
are considering are typically prone to having photo-z with larger
uncertainties.

The SDSS-SCUSS selection has better photometric redshifts
than the DES bright and faint selections as indicated in Table 3.
SDSS-SCUSS galaxies are targeted using the SDSS photometry,
which is shallower than the DES photometry. Fig. 3 shows that
SDSS-SCUSS targets are redder in g — r than the targets from the
DES selections. SDSS-SCUSS targets are typically redderin g — r
colour, compared to DES targets, and as such typically have stronger
Balmer and 4000 A breaks. This allows for an easier redshift mea-
surement, particularly for galaxies at z < 1. The SDSS-SCUSS
r —iand r — i/g — r colour selections help to exclude galaxies
with power-law SEDs, which are more difficult to locate in red-

shift space. Figs 3 and 6 show that the DES selections, which do
not incorporate such colour selections, will lead to a higher rate of
outliers than the SDSS-SCUSS selection.

Table 3 shows the mean and median z;,, standard deviation, Nor-
malized median absolute deviation (NMAD) and outliers fraction of
the z,, — z,p distribution as a function of g-band magnitude for the
three selections. NMAD is the normalized median absolute devia-
tion defined as 1.48 med|(zpn — zgp)/(1 + zp)|. NMAD is a measure
of the dispersion zp, — Zgp.

The two rows in Fig. 6 show the photometric redshifts obtained
using two different estimators: LE PHARE (bottom row) and ANNZ2
(top row). ANNz2 and LE PHARE photometric redshifts have simi-
lar performances, although LE PHARE has a tendency to aggregate
galaxies at z, 0.8. This is a feature caused by the discretization of
the redshift-template parameter space, which is common to most
template fitting methods.

, 2771-2790 (2017)
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Table 3. annz2 DES photometric redshifts results for the three eBOSS selections. The DESz selection corresponds to the DES
targets selected at 0.6 < zgp < 1.2. The purpose of the DESz selection is to show the photo-z quality at high redshift, redshift higher

than 0.6.
DES bright DES faint SDSS-SCUSS  DESz bright DESz faint SDSS-SCUSSz

Zph 0.72 0.8 0.63 0.8 0.83 0.71
205 <g <22 Median (zpn) 0.74 0.82 0.67 0.79 0.85 0.72
o[zph — Zspl 0.21 0.3 0.12 0.14 0.2 0.09
NMADIzph — zsp] 0.07 0.11 0.04 0.05 0.08 0.03

Outliers 101 71 10 43 40 5
Zph 0.85 0.93 0.7 0.85 0.92 0.75
22 <g<23 Median (zpn) 0.85 0.92 0.72 0.85 0.92 0.75
0 [zph — zZsp] 0.15 0.22 0.11 0.1 0.13 0.09
NMADzph — zsp] 0.04 0.05 0.04 0.03 0.04 0.03

Outliers 187 223 37 83 104 21
Zph 0.83 0.91 0.69 0.84 0.91 0.74
205 <g<23 Median (zpn) 0.84 0.92 0.72 0.84 0.91 0.75
o[zph — Zspl 0.17 0.23 0.11 0.11 0.14 0.09
NMADIzph — zsp] 0.04 0.06 0.04 0.03 0.05 0.03

Outliers 288 294 47 126 144 26

3.2 Reducing the outlier fraction: template fitting versus
neural networks

In the context of the DES survey, we investigate possible ways to re-
duce the redshift outliers fraction. ELGs are the most difficult galaxy
population for measuring accurate z,. ELGs typically constitute a
large percentage of outliers. We take advantage of the eBOSS sam-
ple to look at possible ways of calibrating and reducing the outliers
fraction. One solution, proposed by Newman et al. (2013), involves
comparing the photometric redshifts returned by template fitting
methods with those from machine learning techniques. Outliers are
pruned by searching for large differences between the results re-
turned for each of these methods. We demonstrate this using the
DES-eBOSS data in the top panel of Fig. 7, which shows the dif-
ference between the spectroscopic redshifts and the photometric
redshifts estimated by LE PHARE and the difference between the
redshifts from LE PHARE and those from annz2. Accurate photo-
metric redshifts are located inside the black lines. The red lines
show a possible template fitting versus machine learning criterion
at |ANNZ2 - LE PHARE| = 20pgs, Where opgs = 0.12 is the expected
accuracy for the DES survey. Selecting the galaxies inside the red
lines is a possible way to prune from outliers. It will however re-
move some galaxies for which we have a good photometric redshift.
With this approach one had to therefore make a compromise be-
tween having a sample that is clean and free of outliers, and having
a complete sample, which retains more galaxies but at the expense
of having a higher outlier rate. The bottom panel of Fig. 7 shows
the change in completeness and outlier rate (from the outlier popu-
lation) as a function of the threshold difference applied in pruning
the data set. The solid blue line shows the percentage of outliers
pruned from the total outlier population by the selection criteria.
Outliers are defined as |LE PHARE — Zg,| > 20pgs. The completeness
shows the percentage of galaxies with a reliable photo-z left in the
sample. A selection criterion at 2o pgs prunes about 30 per cent
of outliers and a galaxy sample complete at 92 per cent. Carrasco
Kind & Brunner (2014) gives a more detailed investigation of this
approach.

3.3 Reducing the outliers fraction using random forest
3.3.1 The trz algorithm

‘We now investigate a new method to reduce the outlier fraction using
1pPZ (Trees for Photo-Z) (Carrasco Kind & Brunner 2013). Tpz is a
machine learning algorithm that uses prediction trees and random
forest techniques to find a photometric redshift. TPz implements two
methods: classification or regression trees. We used regression trees
that starts with an initial training sample and splits it into branches.
The split follows a minimization of the squared errors at a given
node. It then splits into two branches unless the minimum number
of galaxies in a leaf was reached. We defined a minimum of 20
galaxies per leaf. We did not try to optimize this number. TPz also
bootstraps the training sample to generate several prediction trees
and combines their predictions to decide of the best way to split
at a node, this is the random forest process. We give 1pz the DES
magnitudes g,r,i,z and colours g — r, r — i, i — z with the eBOSS
spectroscopic redshifts. Fig. 8 shows an example of tree from Tpz
with the DES-eBOSS data.

3.3.2 Results of Tpz on the eBOSS ELG sample

We randomly selected half of the DES-eBOSS spec-z sample to
be the training set, with the remaining half as the testing set. We
then examine the percentage of outliers in each branch of the tree
generated with Tpz. The top panel of Fig. 9 shows the number of
galaxies as a function of the outlier fraction. The colour density
corresponds at the number of branches that have the same number
of galaxies and outlier fraction. We observe that some branches
have a high percentage of outliers.

Same as in Section 3.2, there is a tradeoff between the number
of branches one can prune and the completeness of the resulting
galaxy sample. The bottom panel of Fig. 9 shows the percentage
of galaxies and outliers left in the sample as a function of the
value of the percentage chosen for the outliers selection criterion
used to trim the branches. For example, if we exclude the branches
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Figure 7. The top panel demonstrates a method to reduce the number of
outliers by pruning the data set to exclude those galaxies that have a large dif-
ference between photo-z returned by template fitting and machine learning
methods. The dashed black lines and red solid lines show 20 pgs: twice the
expected accuracy of DES. The bottom panel shows the change in the com-
pleteness of the sample (red dashed line) as a function of pruning threshold
|LE PHARE - ANNZ2|. The blue solid line shows the outlier fraction from the
total outlier sample as a function of pruning threshold |LE PHARE - ANNZ2|.

that have more than 40 per cent of outliers, we have a galaxy
sample complete at 85 per cent and decrease the outlier fraction by
50 per cent (depending on which photometric redshift code is used
to define the outliers).

We note that the number of outliers in this sample is around
1 per cent as shown in Tables 2 and 3. The black solid line, blue
dashed line and green dash—dotted line, we respectively show the
results for TPz, LE PHARE and ANNZz2. We note that this method relies
on having a spectroscopic training sample (i.e. the eBOSS observa-
tions), and that this sample then defines the branches with reliable
photo-z estimation. We stress here that Sections 3.2 and 3.3 show
a photo-z point of view. Some data analysis will want a distance
estimate p(z) for each galaxy without the need of N(z), for example
the analysis of clusters. In this case, being able to identify outliers
by comparing photo-z methods such as explained in Section 3.2
is useful. From a clustering point of view, we need to understand
the sample of galaxies being removed. Then the method presented
in Section 3.3 is more interesting since we remove galaxies by

. .

®@ ¢ @ ¢ @ O O

S < N 1 Q," ‘;\ v
Figure 8. Example of Tpz tree obtained from the DES-eBOSS data. The
colours represent the dimension used for the split at the node.

branches, which are designed from the random forest algorithm.
A drawback of this method is that spectroscopic surveys have a
high incompleteness when compared to photometric surveys. This
method would potentially lead to removing large part of the pho-
tometric sample. More analysis are needed to better understand the
impact of such selections on clustering analysis. We stress again
that these sections have been written from a photo-z point of view.
‘We note that the clustering Section 4 do not use those selections.

4 CLUSTERING PROPERTIES

In this section, we measure the monopole of the spatial correlation
function, as well as the projected angular correlation function for
two of the proposed ELG selections, the DES bright and DES
faint selections. The SDSS-SCUSS selection will be presented in a
separate work in preparation.

The effective area of the footprint is 9.2 deg?. We have selected
in both samples, only those galaxies with secure and 1 line redshift
to be in the redshift range 0.6 < z, < 1.2 and that are visible in the
DES footprint given by the angular mask, as detailed below.

For the bright sample this represents 71.6 per cent of the observed
sample and for the faint sample 68 per cent of the observed sample.
The number of ELGs in the final sample, the mean density and
mean redshift for the bright and faint sample used in this section
are shown in Table 4. The faint sample effectively selects a more
distant sample, with mean redshift at z = 0.9 (in comparison with
the bright sample at z = 0.855) although with a worse efficiency.

In addition to the spectroscopic bright and faint sample, we cal-
culate the monopole of the spatial correlation function for a photo-
metrically selected bright and faint sample, using the redshifts given
by aNNz2 and LE PHARE. Comparing these samples with the spec-
troscopic samples, we investigate how the ELG clustering signal
will be seen in DES. In Table 4, we show the number of ELGs, the

2771-2790 (2017)
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Figure 9. Application of random forest algorithm to DES colours to find
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The bottom panel shows the number of galaxies and outliers remaining
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Table 4. Mean statistics for the bright and faint sample used in this section.
The zgp selection have been obtained selecting ELGs with secure and 1/ine
spectroscopic redshift 0.6 < z < 1.2, while the ANNZ2 and LE PHARE samples
have been selected using their respective photometric redshift measurement
in the same photometric redshift range. These numbers were obtained after
the catalogue was pruned by the angular mask, as detailed below.

Number (purity) Mean density Mean redshift

Bright

Zsp 2613 (100 per cent) 284.02 gal deg 2 0.855

ANNZ2 2902 (86.66 per cent) 315.43 gal deg > 0.866

LE PHARE 3038 (84.10 per cent) 330.22 gal deg 2 0.811
Faint

Zsp 2139 (100 per cent) 232.50 gal/ deg > 0.901

ANNZ2 2582 (79.43 per cent) 280.65 gal deg 2 0.928

LEPHARE 2662 (77.23 per cent)  289.35 gal deg™> 0.841

mean density and mean redshift for these photometric selections.
In these samples, we also look at the purity of ANNZ2 and LE PHARE
in selecting galaxies in the redshift range of interest. In this case
we define purity as the number of sources selected with a given
photometric redshift code, with spectroscopic redshift in the range
0.6 <z, < 1.2. For example, for the bright sample, 87 per cent of
the sources selected with ANNZ2 in the range 0.6 < zp, < 1.2 are
in 0.6 < z,, < 1.2. Table 4 shows that the neural network redshift
code aNNZ2 has a slightly better performance than LE PHARE since
it produces counts and number densities that more closely resem-
ble those from the sample with spectroscopic redshifts. Also, both
algorithms worked better for the bright than for the faint sample.
It is important to note that in order to calculate the monopole for
the photometric samples, we will use their spectroscopic redshifts
to obtain distances, and not their photometric redshifts. The red-
shift distribution for the samples under analysis are shown on the
left panel of Fig. 10, together with the redshift distribution for the
randoms used in the measurement of the correlation functions. The
randoms have been computed considering the different depths of
the DES survey, and the process is detailed next.

Throughout this analysis we assume a flat A cold dark matter
+ v (one massive neutrino) cosmological model based on Planck
2013 + WMAP polarization + ACT/SPT + BAO, with a total
matter density relative to critical 2, = 0.307, o3 = 0.8 (Planck
Collaboration XVI 2014).

4.1 Random fields

The DES observes at different depths, indicating that the measured
density of galaxies in the catalogue cannot be translated directly
into the mean density of galaxies. In general, we will observe more
galaxies in regions where the survey is deeper and less galaxies
where the survey is shallower. This information must be encoded
into the random catalogue to avoid misinterpretation of the galaxy
clustering signal.

We use the MANGLE mask of the DES survey (Fig. 2) in the ob-
served field to create a random catalogue, sampling the footprint
with the same depth, angular distribution and ELG selections. We
use the g band as the only detection band to which we define the
magnitude limit, as imposed by the target selection (see target se-
lection in Section 2.4). The magnitude limit distribution for the
analysed area is shown in the first panel of Fig. 2 in units of magni-
tude for a 2 arcsec aperture at 100

We first select regions inside the mask with limiting 2 arcsec
aperture magnitude in g band between 23.4 < mag < 25.8. With
this cut, we ensure a negligible loss of area. The final effective area
continues to be 9.2 deg?.

‘We now proceed to generate the random catalogues following the
depth and angular footprint of the MANGLE mask.

In order to generate non-uniform random catalogues correspond-
ing to the variations in depth, we apply the following methodology:

(i) Create a uniform random catalogue following the angular
footprint of the mask.

(i1) Associate the galaxy and random catalogues to the properties
of the mask, polygon where they lay in. Retrieve the information
about the area and the depth in band g, given in the mask for each
source in both catalogues.

(iii) Study the distribution of galaxies as a function of MANGLE
depth. Generate number of galaxies bins in several ranges of g band
from 23.4 to 25.8.
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Figure 10. Left figure shows the redshift distribution for the ELG bright and faint samples, superimposed to their corresponding random samples used in the
calculation of the correlation functions. The modelling of the randoms is discussed in Section 4.1. Right figure shows the ELG density (blue lines) as a function
of magnitude limit in g band for the bright (upper panel) and faint (bottom panel) samples. Red lines show the polynomial fit used to assign weights to the
random catalogues, once we normalize it to 1 at its maximum m = 25.8. For some intermediate magnitude limits, there is an apparent decrease in density. This
is definitely a variance effect, due to the small area observed in a very in-homogeneous footprint and the small number of ELG targets.

(iv) Build the density distribution in each depth bin as the number
of galaxies over the area (information given by MANGLE) and generate
the density function, i.e. the density as a function of depth.

(v) Create the probability function according to

f”f{w.mx p(m) dm
P[l] — Mmin

tot

fr;"mux p(m) dm ’

tof
min

ey

where m, and m! ; are the maximum and the minimum values

of the depth in the bin i and m!%, and m.J, are the initial and final
depth according to the binning used. In our case, mo, = 25.8 and
mo =234

(vi) Assign a probability to random points according to the mag-
nitude limit.

(vii) Assign a random value in the interval (0 — 1] for each
random point and compare with the probability given in the previous
step. We accept the random point if random value is smaller than

the probability and reject it otherwise.

On the right-hand panel of Fig. 10, we show both the ELG density
as a function of magnitude limit in g band, as well as the probability
distribution as a function of magnitude limit in g band for the
randoms, based on the steps above, for both the bright and faint
sample. This measurement is very limited by sample variance. None
the less, we approximate the density distribution by a first-order
polynomial to assign reject/acceptance probabilities as a function
of magnitude limit for the random samples. We find a mean error of
8 per cent for each of the ELG probability densities estimated using
the variance cookbook (Moster et al. 2011) with similar survey
configurations as COSMOS.

With the probability distribution as a function of depth and posi-
tion in the footprint, we can now calculate the random sample used
throughout the following analysis, after we model the ELG redshift
distribution. In both samples, we calculate approximately 2.8 x 10°
random points.

We model the line-of-sight redshift distribution of the bright and
faint random samples based on the ELG distributions shown on the
left-hand panel of Fig. 10. We transform the redshift distribution into
a probability distribution function and use this to assign redshifts
to the random sample. We do not consider the existing correlation
between depth and redshift range. As deeper regions reach higher
redshifts, this might be an important effect when we move to future
larger data releases. For now, we ignore this effect since we are
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mostly limited by cosmic variance. The redshift distributions for
galaxy data and randoms used in the analysis are shown on the
left-hand panel of Fig. 10.

We have verified that a non-uniform random constructed from the
MANGLE mask has no correlation with itself, whereas a random that
is uniform in magnitude correlates with the data on small scales.
This indicates that our random is appropriate for the clustering
analysis, whereas a uniform random is not. We have also applied
our methodology for generation of randoms to simulations of the
DES and found that the correlations measured are consistent with
the theoretical results.

Another possible approach would be to perform a more conser-
vative analysis and lower the magnitude limit such that field-to-field
variations become negligible (see e.g. Kim et al. 2014). Since this
would decrease even further the size of our galaxy sample, we de-
cided to account for the observed magnitude limit variations, as
these were readily available from the MANGLE mask.

4.2 Two-point spatial correlation function

We estimate the two-point spatial correlation function (2PTCF) via
the Landy and Szalay (LS, Landy & Szalay 1993) estimator under
the fiducial cosmology on scales 1 < s < 50 Mpc h~! using the cute
code® (Alonso 2015) and compute the galaxy bias for the considered
samples. Throughout this section, we use the letter s to refer to scales
in redshift space for the 2PTCF monopole computation.

The Poisson errors associated with LS estimator underestimate
the actual uncertainty in the correlation function. Following Xu et al.
(2012), here we consider a theoretical estimation for the covariance
of the spatial 2PTCF assuming Gaussianity and a linear independent
evolution of Fourier modes of the matter field overdensity,

2k o 17°
Cove(r,r’) = V/o dk ﬁ]o(kr)ﬂ)(kr) {P(k)-F %] , 2

where V is the volume of the sample and 7 represents the mean
number of galaxies per volume unit, accounting for the shot noise
(SN).

To take into account the effect of binning on the estimates of
the 2PTCF and its covariance we spherically average them inside

6 https://github.com/damonge/CUTE
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Figure 11. Contributions to the 2PTCF error estimates. Black circles represent the LS estimate for the pure Poisson error. Continuous curves show theoretical
estimates of Gaussian and linear variance computed according to equation (2). The pure SN contribution had been isolated (red curve) from the sample
variance-dependent part (blue curve) in order to be compared with the LS Poisson error estimate. The agreement of SN and LS estimates is consistent with the
interpretation of Poisson error as the number of data—data pairs estimated per bin. The full estimate from equation (2) (magenta curve) is the error estimate

used on the analysis presented.

each considered bin following Xu et al. (2012). For the scales and
bin-width considered, the effect of binning on the 2PTCF itself is
negligible, the same applies to the contribution of the power spec-
trum to the theoretical covariance, equation (2), but it is not true
for its pure SN contribution, i.e. the resulting of only consider-
ing the term proportional to 722, which is intrinsically diagonal
and divergent. However, this property comes from the fact that
equation (2) applies only in a continuous limit, i.e. for infinitesimal
bin widths. After taking the spherical average of such contribution
to the covariance we have,

COV?N(rru rm) = EL [%:l (Sin; . (3)
Var |r L r]on

A comparison of the contribution to the square root of the variance
of the 2PTCF is shown on the left-hand panel of Fig. 11, where
the SN contribution has been isolated in order to be compared
with the Poisson error resulting from LS estimation according to
cUTE code (circle points). An agreement is observed between this
two estimates, this is consistent with the interpretation of Poisson
variance coming from the number of data-data pairs estimated per
bin.” Note that the curves shown under Sample Variance label in
Fig. 11 represent all contributions to the 2PTCF variance except the
pure SN one, equation (3).

The left-hand panel of Fig. 11 shows that the effect of sample
variance could have an impact in the error budget for our analysis
even by assuming the simple case of Gaussian and linear covariance.
Consequently, throughout the rest of our analysis we consider its
effect via the theoretical treatment described above. It is indeed
important to mention that a more precise analysis of the clustering
signal will require the creation of mock catalogues both for a more
precise calculation of the covariance, and in a bigger volume to have
a significant clustering value.

On the error estimates, in addition to the sample variance, we
also account for the effects of the finite volume of the sample
by estimating an integral constraint factor (IC). For this purpose,

7 For the smallest scales, Fig. 11 shows that the estimate of SN contribution
via equation (3) underestimates the Poisson contribution from LS. This is in-
deed expected given that here we are considering pure linear SN contribution
(see e.g. section 3.2 of Xu et al. 2012).

we measured random-random pairs from the random catalogues,
RR(s), up to the maximum separation allowed by the sample volume
and, following Roche & Eales (1999), we estimate IC as

> E(5)RR(s;)
Z’- RR(S,) ’

modelling the clustering signal on the spatial 2PTCF, £(s), as a
single power law of the form

s -Y
§(s) = (*) . (5)
S0

We consider two approaches to fit the power law, equation 5
to the data: (i) by subtracting the IC from the model and (ii) by
allowing it to vary with the model parameters. We checked that
these two approaches are consistent with each other with an iterative
procedure for the first one, in which we first fit a model to the original
data, then use this model to estimate a correction via equation 4,
and apply this correction to the data. We repeat the process to the
new data until convergence is achieved. In our case, convergence
was always reached in less than 20 iterations. Note however that
by using the second approach, fitting the model and IC correction
simultaneously, we avoid the need for correcting the data.

This single power-law model represents reasonable approxima-
tion for comoving scales in the range 1 < s < 20h~! Mpc. We
considered different maximum scales between 10 and 504~ Mpc
to perform the fit and found that the results are insensitive to this
scale. None the less 20 h~! Mpc was chosen because (i) at the red-
shifts of interest, the linear regime extends up to this scale and (ii)
for scales below 20/4~' Mpc, the amplitude of measured &(s) is
always one order of magnitude larger than our estimates of the IC.

We apply the model above to the spectroscopically selected ELG
bright and faint samples, to the photometrically selected catalogues
using ANNz2 and LE PHARE photo-z codes, and to some of the pruned
catalogues presented in Section 3.2. Our results are shown in
Table 5. The zy, samples are selected with spectroscopic red-
shifts between 0.6 and 1.2. ANNz2 and LE PHARE are samples se-
lected in the same redshift range but using their photo-z value.
For the bottom lines of table, we use the photo-z values and a cut
|LE PHARE—ANNZ2| < 0.24, which is presented in Section 3.2. How-
ever, we use their true redshift, and not the photo-z, to compute

IC = 4
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Table S. 3D clustering properties of faint and bright samples selected using the different redshift estimates. Single
power-law model for the 3D 2PTCF (equation 5) parameters were constrained in the range 1 < s < 204~ Mpc.
The integral constraint correction (IC) was modelled according to equation (4) and is for all cases presented one
order of magnitude lower than the 2PTCF for the considered scales.

Sample Redshift selection so (h~! Mpc) y 1C x%/d.of.
Zep 5131017 13017093 0.014 0.594
ANNZ2 5427014 1.26070:003 0.017 1.03
Faint LE PHARE 5.35101¢ 1.244100% 0,018 0.896
ANNZ2 |LE PHARE—ANNZ2| < 0.24 5‘641‘8:{2 1.272f8;83; 0.017 1.36
LE PHARE |LE PHARE—ANNZ2| < 0.24 5.54f8:{§ 1.252f8:8ﬁ 0.018 1.12
Zep 5.231018 121375504 0.019 0.741
ANNZ2 5741013 1.21275:036 0.021 1.02
Bright LE PHARE 5.661013 12114093 0.021 1.05
ANNZ2 |LE PHARE—ANNZ2| < 0.24 5‘801‘8:}2 1.208f8;8§§ 0.021 1.18
LE PHARE |LE PHARE—ANNZ2| < 0.24 5.82f8:{§ 1.174f8:8;§ 0.02 1.23
2 2
10 T T T T T 10 T T T T
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Figure 12. Comparison of the 3D 2PTCF £&(s) for the faint and bright
samples. The top panel shows the measured correlations. The bottom panel
displays the ratio between bright and faint samples.

distances and in £(s). This way, we can study selection effects from
the photo-z results.

A comparison of the clustering amplitudes for the bright and
faint samples is shown in Fig. 12. The error bars were computed by
propagating the uncertainties on the 2-point correlations. We see a
statistical preference for the clustering amplitude of the bright sam-
ple to be higher than the one of the faint sample. This is consistent
with the fitted power-law parameters in Table 5. The bright sample
has higher values for clustering length s, than the faint sample,
while the slope y seems more similar between samples.

Fig. 13 compares the amplitudes of & (s) when z,;, are considered
with respect to the spectroscopic selection.

As we are limited by the sample size and large error bars, no
significant comparison is made between the clustering properties
of the spectroscopic and photometric samples. There is a slight
increase on the clustering correlation when photo-zs are used, which
may be a result of competing scatter effects due to photo-z errors.

For the present catalogues, the sample variance and the IC con-
tributions are significant sources of errors, but as the sample grows

Figure 13. Comparison of &(s) for different redshift selections for the faint
sample only. The top panel shows the monopole for the clean zg, sample
between 0.6 < z < 1.2. The bottom panel shows the ratio between differ-
ent redshift selections and the clean sample. An apparent increase on the
clustering at large scales is seen for the photometric redshifts selections.

in size, it should be possible to investigate in detail the effects of
photo-z selection in the angular correlation function. We plan to
assess the impact of propagating photo-z errors into angular cor-
relations for future larger ELG catalogues from joint eBOSS/DES
observations.

After investigating the monopole for these samples, beyond the
spectroscopically selected ones, we focus again solely in the spec-
troscopic bright and faint ELG science samples, where we will
measure the mean galaxy bias in the projected angular correlation
function.

4.3 Galaxy bias

We measure a mean galaxy bias for the bright and faint samples
separately. The samples span a large redshift range 0.6 < z < 1.2.
The meaning of the bias obtained must be taken with caution, as
it is an average over a long cosmic time. We roughly assess the
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Figure 14. The galaxy bias calculated using a constant and a scale-dependent relation for the faint (left) and bright (right) sample, measured from projected
correlation function. In dashed lines, we show the bias value calculated as the average between 2~! and 10 2~ Mpc (blue) and between h~! and 20 A~ Mpc
(red). The straight lines are a scale-dependent bias fitting to b(rp,) = bo + b1/rp, such that by intends to represent a large-scale bias. The results depend on
the range of scales used in the average and in the limiting value of the fit. For comparison to previous studies, we select the averaged bias between h~! and
104~ Mpc (dashed blue) as our bias proxy, but we note that different definitions gives different results.

galaxy bias evolution by comparing the results for the bright and
faint samples, which are at slightly different mean redshifts. As a
result, we estimate the absolute magnitude limit that DES reaches
when selecting ELGs.

In order to account for redshift space distortions, we follow the
results from the VIPERS clustering analysis (Marulli et al. 2013)
and estimate the galaxy bias for our samples using the projected
real space correlation function w (7).

We first estimate the anisotropic 2PTCEF, &(rp, 70), in the spatial
ranges 7t € [1,40] A~! Mpc and rp € [1, 50] A~ Mpc using the
LS (Landy & Szalay 1993) estimator under the fiducial cosmology
using the cute code and integrate along the line of sight, 7, to
estimate wy(rp) for all samples,

wy(rp) = 2/O d'&(ry, ), (6)

where £(ry, ') = &(s = /72 +r2) and in practice the line-of-

sight integration is taken up to 7y, = 302! Mpc as in (Marulli
et al. 2013).
Then, the galaxy bias is defined as

_ | wp(rp)
b(ry) = 7wl',"(rp)’ @)

where wp(r,) is given by equation (6) and is obtained from the
galaxy sample, while w;'(ry) is the projected matter correlation
function. We compute w'(r,) from the theoretical power spectrum
obtained using cams (Lewis & Bridle 2002), with the HALOFIT routine
(Smith et al. 2003) for non-linear corrections.

Throughout the analysis we assume a passive bias model. This
is sufficient considering the small statistics. We note that ELGs are
not passively evolved. A more robust bias analysis will be necessary
when the sample increase.

As for the case of the 3D 2PTCF, the sample variance on
the error in the 2PTCEF is considered using the linear theoretical

prediction,

Covu,p(rp,rlg) =4 / dmt / dnt

x Cov (\/712 + 2, \/71/2 + rl/,z) , (®)

where Cov; is given by equation (2). A comparison of the contri-
bution to the square root of the variance of the projected 2PTCF is
shown in the right-hand panel of Fig 11, where, as in the previous
section, the pure SN contribution has been isolated in order to be
compared with the pure Poisson error resulting from LS estimation
according to cuTe code (circle points). As in the 3D 2PTCF, we
confirm an agreement between this two estimates. As for the 3D
2PTCEF, throughout the rest of our analysis we consider its effect
via the theoretical treatment described above.

For comparison with VIPERS (Marulli et al. 2013), the bias is
first estimated as the average of b(r;,) in the range of [1-10] h~! Mpc,
where the bias is fairly constant, as claimed in VIPERS and shown
in Fig. 14. In order to account for a small-scale dependency on the
smallest scales, we also fit a relation b(r,) = by + by /1y, such that
by is taken as an estimate of the linear large-scale bias.

For both methods used, averaged and scale-dependent bias, Ta-
ble 6 shows that the results depend on the scales used. The small-
est scales bring in non-linearities whereas the largest scales are
subject to sample variance, lower signal to noise and the largest
possible effects from the IC. We note that we find the constant IC
(0.01-0.02) to be an order of magnitude lower than the correlation
(0.1-0.2) around 20 ~#~' Mpc. This 10 per cent effect on the cor-
relation could in principle affect the bias estimation. This effect is
smaller around 10 47! Mpc, where the correlation is a factor of 2-3
larger.

The values for the bias change significantly between the averaged
and scale-dependent bias. This indicates a measurable effect of the
non-linearity on the smallest scales.
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Table 6. Clustering properties and bias for the faint and bright samples selected with spectroscopic redshifts. The clustering length and slope were
obtained by fitting a power law for w(rp) for 0.5 < rp, < 20 h~"Mpc. The averaged bias value was obtained by averaging the scale-dependent bias
b(rp) = [w(rp)/w(rp)] 1/2, while by comes from a fit to the scale-dependent bias b(r,) = bg + by /r. Both the average and the fit bias are obtained over

scales 1 < rp < 107~ "Mpc as well as 1 < rp < 20 h~'Mpc.

Sample so (Mpc A1) y Mean z Bias averaged up to [10-20] Mpc /™! x2/d.o.f. by fitted up to [10-20] Mpc A~
Bright 4.04705 146775133 0.855 1.587019-1.85701} 0.092 1.90%023-2.067017
Faint 426500 149955 0.901 165t 11191401 0.1 1754029 06019
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Figure 15. In black, the galaxy bias for our target selection samples in
the range 0.6 < z < 1.2 for the faint and bright. The reference values
comes from table 1 of Marulli et al. (2013) from the VIPERS survey. In
both cases, biases have been measured as the average in [1-10] 4~' Mpc.
Our bias agrees within one sigma with a galaxy population brighter than
Mp — 5log (h) < —20.5.

The errors have been obtained propagating the uncertainties in ry
and y shown in the table, after fitting to (Marulli et al. 2013)

_ () TQresh
w(rp) =Tp (a) T%) (9)

In Fig. 15, we compare our measurements to those published
for VIPERS (Marulli et al. 2013). For this comparison, we use our
averaged bias as reference to reflect the VIPERS procedure.

Our bias agrees with that from VIPERS for a population brighter
than M — log (h) < —20.5. To confirm this result, we calculated
the absolute magnitude for the faint and bright samples together
(there is a strong overlap between both samples) to directly measure
the limiting absolute magnitude of our sample. We calculate the
absolute magnitude for the B band using the template fitting code
LE PHARE, fixing the redshift to its spectroscopic value. We show
the B-band absolute magnitude density distribution in Fig. 16 as a
function of redshift for the bright and faint sample. The result agrees
well with what it is expected from the galaxy bias of the sample.
The luminosity dependent clustering will be analysed in more detail
in future studies.

5 CONCLUSION

We used 9.2 deg” of eBOSS observations to study the properties of
different possible ELG target selections. The bright DES grz bands

spectroscopic redshift

Figure 16. Absolute magnitude in the B band for the ELG spectroscopic
sample as a function of spectroscopic redshift. Magnitudes were calculated
using LE PHARE with the same configuration as in the photo-z calculation, but
using the galaxy spectroscopic redshifts. The population is consistent with
a selection Mp — log (h) < —20.5 in the redshift interval 0.6 < z < 1.2, in
agreement with the bias measurement from Fig. 15. This corresponds to 84
and 72 per cent in respectively the bright and faint sample.

selection achieves 73 per cent success rate and 71 per cent in the
desired redshift window 0.6 < z < 1.2. The faint DES grz bands
selection have slightly lower performances with 66 per cent success
rate and 68 per cent in the redshift window. Both selections have a
stellar contamination lower than 2 per cent. We find a mean redshift
of 0.80 and 0.87 for respectively the bright and faint selection. To
prepare for the eBOSS survey, we looked at the possible systematic
effects on the power spectrum measurement: stellar photometry
contamination, airmass, galactic dust and survey depth across the
DES year one data. We find a galaxy density variation lower than
15 per cent for each of these systematic effects, which is the highest
fluctuation allowed to avoid damaging measurements. With a target
density of 857 gal deg™2, our analysis suggests the DES bright
selection will give the most accurate power spectrum measurement
with an eBOSS-like survey type.

The outliers fraction is one of the main sources of systemat-
ics in cosmic shear and large-scale structure analyses (Bernstein
& Huterer 2010). With the 4600 eBOSS spectroscopic redshifts,
we investigate possible techniques to identify the photometric red-
shift outliers. Using the random forest code Tpz, we find that by
removing the colour branches with a percentage of outliers higher
than 10 per cent, we are left with 10 per cent outliers and a galaxy
sample of 71 per cent completeness. Abramo et al. (2012) and
Newman et al. (2013) suggest another possible technique to de-
crease the outliers fraction using a comparison between template
fitting and machine learning. Using this technique, we decrease the
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outlier fraction by 30 per cent and reduce the galaxy sample by
15 per cent. We investigated the clustering properties of our sam-
ples, estimating the 3D two-point correlation function monopole
&(s) and the projected real space correlation function w(r,). We
computed the large-scale galaxy bias, and found it to be consis-
tent with previous ELG measurements (Marulli et al. 2013; Mostek
et al. 2013; Favole et al. 2016). The galaxy bias between the DES
bright and faint sample are within 1o of each other. We find a
slightly higher bias for the faint sample compared to the bright that
is expected due to redshift evolution. We also looked at the binning
effectin clustering analysis when having to define a redshift window
with photometric redshifts. Considering that DES will have a good
photometric redshifts calibration, we used spectroscopic redshifts to
compute correlation functions and use the photo-z to define the 0.6—
1.2 redshift window. We do not find significant differences when
using spectroscopic and photometric redshifts. We finally compare
the mean value of the galaxy bias to the deep spectroscopic sur-
vey VIPERS and find that the ELG sample agrees with that of a
population brighter than Mz — log(h) < —20.5.
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APPENDIX A: SEXTRACTOR PARAMETERS
The SExTRACTOR parameters used in this article are

(i) SPREAD MODEL (SPREADERR MODEL) is a
morphology based star—galaxy classifier based on comparing the
pixel map of the object in the co-add with the PSF model and a
exponential+PSF convolved model.

(ii)) MAG_.DETMODEL and MAG_MODEL are magni-
tudes measured from a fitted shape to the object in the detection
image.

(iii)) MAG_APER is a magnitude measured in a circular
aperture of specified diameter, here we use an aperture of
2 arcsec.

APPENDIX B: COMPUTING LIMITING
MAGNITUDE WITH MANGLE

For the weighted average method, the co-added flux is calculated
as a weighted average summed over all the exposures:

Z,‘ w; pi F;
> wi
where F; is the flux in a single exposure and p; a rescaling factor

so that fluxes have the same photometric calibration, the calibrated
flux is p;F;. The weights are given by
1

W= (B2)
 Pion

Fo = ) (Bl)

where o, ; is the variance present with no signal flux, including
the sky background, read noise and calibration uncertainties.

Using Gaussian error propagation, the variance of Fi, is given
by

2 _
Oor = §

i

-1
1

2

5 (B3)
pi Ubg.i

To go from the co-added weight map to a magnitude limit, we define
the magnitude limit by the flux in a given aperture that exceeds the
background noise by a factor of 10, i.e. the 10c magnitude limit.
Once o, is calculated in each region, we use

(D/2y
Miimic = Mzpca — 2.5 log | 10 o7z Oet | (B4)

where myzpc, 18 the zero-point of the co-added images and D the
diameter of the aperture used (the current masks use D = 2 arc-
sec). The factor in the square root is the number of pixels in the
aperture.

APPENDIX C: PHOTOMETRIC REDSHIFTS
RESULTS

‘We show complementary photometric redshifts results.
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Figure C1. Top and bottom panels show respectively ANNz2 and LE PHARE photometric redshift results for the three eBOSS spectroscopic samples.

APPENDIX D: EBOSS SYSTEMATICS
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Figure D1. Density fluctuation of galaxies as a function of the depth, airmass and Galactic extinction in the top, middle and bottom row for the g,r,z bands.
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the mean galaxy density fluctuate ion for the eBOSS target selection.
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