12 research outputs found

    Taking two to tango:fMRI analysis of improvised joint action with physical contact

    Get PDF
    <div><p>Many forms of joint action involve physical coupling between the participants, such as when moving a sofa together or dancing a tango. We report the results of a novel two-person functional MRI study in which trained couple dancers engaged in bimanual contact with an experimenter standing next to the bore of the magnet, and in which the two alternated between being the leader and the follower of joint improvised movements. Leading showed a general pattern of self-orientation, being associated with brain areas involved in motor planning, navigation, sequencing, action monitoring, and error correction. In contrast, following showed a far more sensory, externally-oriented pattern, revealing areas involved in somatosensation, proprioception, motion tracking, social cognition, and outcome monitoring. We also had participants perform a “mutual” condition in which the movement patterns were pre-learned and the roles were symmetric, thereby minimizing any tendency toward either leading or following. The mutual condition showed greater activity in brain areas involved in mentalizing and social reward than did leading or following. Finally, the analysis of improvisation revealed the dual importance of motor-planning and working-memory areas. We discuss these results in terms of theories of both joint action and improvisation.</p></div

    Development temperature has persistent effects on muscle growth responses in gilthead sea bream

    Get PDF
    Initially we characterised growth responses to altered nutritional input at the transcriptional and tissue levels in the fast skeletal muscle of juvenile gilthead sea bream. Fish reared at 21–22°C (range) were fed a commercial diet at 3% body mass d−1 (non-satiation feeding, NSF) for 4 weeks, fasted for 4d (F) and then fed to satiation (SF) for 21d. 13 out of 34 genes investigated showed consistent patterns of regulation between nutritional states. Fasting was associated with a 20-fold increase in MAFbx, and a 5-fold increase in Six1 and WASp expression, which returned to NSF levels within 16h of SF. Refeeding to satiation was associated with a rapid (<24 h) 12 to 17-fold increase in UNC45, Hsp70 and Hsp90α transcripts coding for molecular chaperones associated with unfolded protein response pathways. The growth factors FGF6 and IGF1 increased 6.0 and 4.5-fold within 16 h and 24 h of refeeding respectively. The average growth in diameter of fast muscle fibres was checked with fasting and significant fibre hypertrophy was only observed after 13d and 21d SF. To investigate developmental plasticity in growth responses we used the same experimental protocol with fish reared at either 17.5–18.5°C (range) (LT) or 21–22°C (range) (HT) to metamorphosis and then transferred to 21–22°C. There were persistent effects of development temperature on muscle growth patterns with 20% more fibres of lower average diameter in LT than HT group of similar body size. Altering the nutritional input to the muscle to stimulate growth revealed cryptic changes in the expression of UNC45 and Hsp90α with higher transcript abundance in the LT than HT groups, whereas there were no differences in the expression of MAFbx and Six1. It was concluded that myogenesis and gene expression patterns during growth are not fixed, but can be modified by temperature during the early stages of the life cycle.Publisher PDFPeer reviewe

    New developments and biological insights into the farming of Solea senegalensis reinforcing its aquaculture potential

    Get PDF
    Senegalese sole was one of the earliest identified candidate species with high potential for aquaculture diversification in the south of Europe. Its culture has been possible, and commercially attempted, for several decades, but intensive production has been slow to take off. This has been explained mostly by serious disease problems, high mortality at weaning, variable growth and poor juvenile quality. However, a strong and sustained research investment that started in the eighties has led to a better understanding of the requirements and particularities of this species. More recently, better management and technical improvements have been introduced, which have led to important progress in productivity and given a new impetus to the cultivation of Senegalese sole. As a result, the last 5 years have marked a probable turning point in the culture of sole towards the development of a knowledge-driven, competitive and sustainable industry. This review will focus on the main technical improvements and advances in the state of knowledge that have been made in the last decade in areas as diverse as reproductive biology, behaviour, physiology, nutritional requirements, modulation of the immune system in response to environmental parameters and stress, and characterization and mitigation of the main disease threats. It is now clear that Senegalese sole has important particularities that differentiate it from other current and candidate marine aquaculture species, which bring about important challenges, some still unsolved, but also notable opportunities (e.g. a nutritional physiology that is better adapted to dietary vegetable ingredients), as will be discussed here
    corecore