21 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Harmonization and standardization of nucleus pulposus cell extraction and culture methods

    Get PDF
    Background: In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab‐to‐lab variability jeopardizes the much‐needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods: The most commonly applied methods for NP cell extraction, expansion, and re‐differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re‐differentiation media and techniques were also investigated. Results: Recommended protocols are provided for extraction, expansion, and re‐differentiation of NP cells from common species utilized for NP cell culture. Conclusions: This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species‐specific pronase usage, 60–100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross‐lab comparisons on NP cells worldwide

    Ingénierie aux échelles nanométriques de matériaux chalcogénures à changement de phase pour les mémoires à changement de phase du futur

    No full text
    In terms of performance, cost and functional speed, phase-change memories are playing a key role in data storage technologies. Leveraging the properties of some chalcogenide materials, phase-change materials (PCMs) present unique features, mainly: fast and reversible switching between amorphous and crystalline states with significant optical and electrical contrasts between the both states. However, for an improved performance, the elevated power consumption due to the high programming current must be reduced, and the crystallization temperature also has to be increased. In this context, we have developed new multilayer systems of [GeTe/C]n and [Ge2Sb2Te5/C]n. The aim is to obtain, in a controlled and reproducible manner, a thin layer of nanostructured PCM with dimensions less than 10 nm. The multilayers were produced by the magnetron sputtering deposition technique in a 200 mm industrial equipment with a multi-cathode chamber. The multilayers are amorphous after deposition. Ion beam techniques permitted to check periodicity and composition of the multilayers. The sheet resistance and reflectivity as a function of temperature were measured in situ. The crystallization temperature of PCM in the multilayer structure increases and is dependent on the thickness of the PCM layer and that of the carbon films. The kinetics and magnitude of the amorphous-crystal transition of PCM in the multilayers are also significantly affected. The impact of the multilayer structure on the crystallization of GeTe versus Ge2Sb2Te5 is then compared and discussed with respect to their crystallization mechanism. We show that the initially amorphous multilayer structure is retained even after PCM crystallization during an annealing that is identical to the one used for the manufacture of memory devices (300 °C for 15 min). Thus, it is possible to obtain nanocrystalline grains of PCM in amorphous C on the order of 4 nm vertically and 20-30 nm in the layer plane. These results are compared with the microstructure of C-doped GeTe and Ge2Sb2Te5 films. Finally, by using X-ray diffraction measurements in the laboratory and by in situ experiments at the SOLEIL synchrotron, we were able to follow the evolution of the structure of these multilayers during annealing. For example, we reported that a local percolation effect of the GeTe grains between the layers of C occurs above a certain temperature.En terme de performance, de coĂ»t et de vitesse de fonctionnement, les mĂ©moires Ă  changement de phase occupent une place importante dans les technologies de stockage de donnĂ©es. Elles utilisent les propriĂ©tĂ©s de certains matĂ©riaux Ă  changement de phase (PCM), principalement des alliages de matĂ©riaux chalcogĂ©nures, qui prĂ©sentent des caractĂ©ristiques uniques : commutation rapide et rĂ©versible entre un Ă©tat amorphe et un Ă©tat cristallin avec un contraste optique et Ă©lectrique important entre les deux Ă©tats. Cependant, pour de meilleures performances, la consommation d’énergie due aux courants de programmation Ă©levĂ©s doit ĂȘtre rĂ©duite et la tempĂ©rature de cristallisation augmentĂ©e. Dans ce contexte, nous avons Ă©laborĂ© de nouveaux systĂšmes de multicouches de [GeTe/C]n et [Ge2Sb2Te5/C]n. Le but est d’obtenir de maniĂšre contrĂŽlĂ©e et reproductible une couche mince de PCM nanostructurĂ© avec une ou des dimensions caractĂ©ristiques infĂ©rieures Ă  10 nm. Les multicouches ont Ă©tĂ© Ă©laborĂ©es par la technique de dĂ©pĂŽt par pulvĂ©risation cathodique magnĂ©tron dans un bĂąti de dĂ©pĂŽt industriel 200 mm Ă©quipĂ© d’une chambre multi-cathodes. Les multicouches sont amorphes aprĂšs dĂ©pĂŽt. Des analyses par faisceaux d’ions ont permis de contrĂŽler la pĂ©riodicitĂ© et la composition des multicouches ainsi Ă©laborĂ©es. Des mesures de rĂ©sistivitĂ© et de rĂ©flectivitĂ© en tempĂ©rature montrent que la tempĂ©rature de cristallisation du PCM dans la structure multicouche augmente et dĂ©pend de l’épaisseur du PCM et des films de carbone. Aussi, la cinĂ©tique et l’amplitude de la transition amorphe-cristal du PCM dans la multicouche est aussi largement affectĂ©e. L’impact de la structure multicouche sur la cristallisation du GeTe et du Ge2Sb2Te5 est alors comparĂ©e et discutĂ©e au regard de la nature de leur mĂ©canisme de cristallisation. Nous montrons que la structure multicouche initialement amorphe est conservĂ©e mĂȘme aprĂšs cristallisation du PCM lors d’un recuit identique Ă  celui utilisĂ© pour la fabrication des dispositifs mĂ©moires (300 °C pendant 15 min). Ainsi, il est possible d’obtenir des grains nanocristallins de PCM dans du C amorphe de l’ordre de 4 nm verticalement et de 20-30 nm dans le plan des couches. Ces rĂ©sultats sont comparĂ©s Ă  la microstructure de films de GeTe et Ge2Sb2Te5 dopĂ©s avec du C. Enfin, l’analyse de l’évolution de la structure de ces multicouches par des mesures de diffraction de rayons X en laboratoire et par des mesures in situ au cours d’un recuit au synchrotron SOLEIL a Ă©tĂ© rĂ©alisĂ©e. Ceci a permis par exemple de mettre en Ă©vidence au-delĂ  d’une certaine tempĂ©rature la percolation locale des grains de GeTe entre les couches de C

    Nano-engineering of chalcogenide phase-change materials for ultimate phase-change memories

    No full text
    En terme de performance, de coĂ»t et de vitesse de fonctionnement, les mĂ©moires Ă  changement de phase occupent une place importante dans les technologies de stockage de donnĂ©es. Elles utilisent les propriĂ©tĂ©s de certains matĂ©riaux Ă  changement de phase (PCM), principalement des alliages de matĂ©riaux chalcogĂ©nures, qui prĂ©sentent des caractĂ©ristiques uniques : commutation rapide et rĂ©versible entre un Ă©tat amorphe et un Ă©tat cristallin avec un contraste optique et Ă©lectrique important entre les deux Ă©tats. Cependant, pour de meilleures performances, la consommation d’énergie due aux courants de programmation Ă©levĂ©s doit ĂȘtre rĂ©duite et la tempĂ©rature de cristallisation augmentĂ©e. Dans ce contexte, nous avons Ă©laborĂ© de nouveaux systĂšmes de multicouches de [GeTe/C]n et [Ge2Sb2Te5/C]n. Le but est d’obtenir de maniĂšre contrĂŽlĂ©e et reproductible une couche mince de PCM nanostructurĂ© avec une ou des dimensions caractĂ©ristiques infĂ©rieures Ă  10 nm. Les multicouches ont Ă©tĂ© Ă©laborĂ©es par la technique de dĂ©pĂŽt par pulvĂ©risation cathodique magnĂ©tron dans un bĂąti de dĂ©pĂŽt industriel 200 mm Ă©quipĂ© d’une chambre multi-cathodes. Les multicouches sont amorphes aprĂšs dĂ©pĂŽt. Des analyses par faisceaux d’ions ont permis de contrĂŽler la pĂ©riodicitĂ© et la composition des multicouches ainsi Ă©laborĂ©es. Des mesures de rĂ©sistivitĂ© et de rĂ©flectivitĂ© en tempĂ©rature montrent que la tempĂ©rature de cristallisation du PCM dans la structure multicouche augmente et dĂ©pend de l’épaisseur du PCM et des films de carbone. Aussi, la cinĂ©tique et l’amplitude de la transition amorphe-cristal du PCM dans la multicouche est aussi largement affectĂ©e. L’impact de la structure multicouche sur la cristallisation du GeTe et du Ge2Sb2Te5 est alors comparĂ©e et discutĂ©e au regard de la nature de leur mĂ©canisme de cristallisation. Nous montrons que la structure multicouche initialement amorphe est conservĂ©e mĂȘme aprĂšs cristallisation du PCM lors d’un recuit identique Ă  celui utilisĂ© pour la fabrication des dispositifs mĂ©moires (300 °C pendant 15 min). Ainsi, il est possible d’obtenir des grains nanocristallins de PCM dans du C amorphe de l’ordre de 4 nm verticalement et de 20-30 nm dans le plan des couches. Ces rĂ©sultats sont comparĂ©s Ă  la microstructure de films de GeTe et Ge2Sb2Te5 dopĂ©s avec du C. Enfin, l’analyse de l’évolution de la structure de ces multicouches par des mesures de diffraction de rayons X en laboratoire et par des mesures in situ au cours d’un recuit au synchrotron SOLEIL a Ă©tĂ© rĂ©alisĂ©e. Ceci a permis par exemple de mettre en Ă©vidence au-delĂ  d’une certaine tempĂ©rature la percolation locale des grains de GeTe entre les couches de C.In terms of performance, cost and functional speed, phase-change memories are playing a key role in data storage technologies. Leveraging the properties of some chalcogenide materials, phase-change materials (PCMs) present unique features, mainly: fast and reversible switching between amorphous and crystalline states with significant optical and electrical contrasts between the both states. However, for an improved performance, the elevated power consumption due to the high programming current must be reduced, and the crystallization temperature also has to be increased. In this context, we have developed new multilayer systems of [GeTe/C]n and [Ge2Sb2Te5/C]n. The aim is to obtain, in a controlled and reproducible manner, a thin layer of nanostructured PCM with dimensions less than 10 nm. The multilayers were produced by the magnetron sputtering deposition technique in a 200 mm industrial equipment with a multi-cathode chamber. The multilayers are amorphous after deposition. Ion beam techniques permitted to check periodicity and composition of the multilayers. The sheet resistance and reflectivity as a function of temperature were measured in situ. The crystallization temperature of PCM in the multilayer structure increases and is dependent on the thickness of the PCM layer and that of the carbon films. The kinetics and magnitude of the amorphous-crystal transition of PCM in the multilayers are also significantly affected. The impact of the multilayer structure on the crystallization of GeTe versus Ge2Sb2Te5 is then compared and discussed with respect to their crystallization mechanism. We show that the initially amorphous multilayer structure is retained even after PCM crystallization during an annealing that is identical to the one used for the manufacture of memory devices (300 °C for 15 min). Thus, it is possible to obtain nanocrystalline grains of PCM in amorphous C on the order of 4 nm vertically and 20-30 nm in the layer plane. These results are compared with the microstructure of C-doped GeTe and Ge2Sb2Te5 films. Finally, by using X-ray diffraction measurements in the laboratory and by in situ experiments at the SOLEIL synchrotron, we were able to follow the evolution of the structure of these multilayers during annealing. For example, we reported that a local percolation effect of the GeTe grains between the layers of C occurs above a certain temperature

    Calculus at Georgia State University

    No full text
    Calculus continues to be a challenge for many students. We have pursued a multifaceted approach to supporting students that involves a) a drop-in tutorial center, b) Supplemental Instruction, c) weekly graded homework, d) online practice using ALEKS, and e) a new Calculus for the Life Science course sequence. The influences of these various support mechanisms will be discussed

    Nanocomposites of chalcogenide phase-change materials: from C-doping of thin films to advanced multilayers

    No full text
    International audienceEngineering of chalcogenide phase-change materials at the nanoscale is required to improve the performances of ultimate size memory devices and reduce their power consumption. Amorphous C-doped GeTe thin films and innovative multilayers consisting of periodic stacks of a few nm thick GeTe, or Ge2_2Sb2_2Te5_5, and C layers with a thickness between 0.5 and 2 nm are deposited by magnetron sputtering at room temperature. The phase-change material is then crystallized by heat treatment. In C-doped GeTe films, the phase separation of C and GeTe during the GeTe crystallization leads to the spontaneous formation of a nanocomposite, consisting of amorphous C located at the grain boundaries of GeTe crystallites, but the resulting nanostructure is highly disordered. In contrast, the deposition of multilayers allows control of the nanostructure and the interfaces between the phase-change material and the C phase. Transmission electron microscopy and X-ray diffraction at room temperature and as a function of temperature during annealing show that the multilayer structure is maintained after crystallization of the phase-change material, even when the thickness of the C layer is as low as 0.5 nm. GeTe and Ge2_2Sb2_2Te5_5 crystallites are anisotropic, their size in the direction perpendicular to the layers being determined by the design of the multilayer. The crystallisation temperature of the GeTe and Ge2Sb2Te5 layers depends on the structure of the stack, revealing scaling and stress effects. The results presented show that GeTe/C and Ge2_2Sb2_2Te5_5/C MLs are promising for applications in memory devices and also in photonic and thermoelectric devices

    Stress Buildup Upon Crystallization of GeTe Thin Films: Curvature Measurements and Modelling

    No full text
    International audiencePhase change materials are attractive materials for non-volatile memories because of their ability to switch reversibly between an amorphous and a crystal phase. The volume change upon crystallization induces mechanical stress that needs to be understood and controlled. In this work, we monitor stress evolution during crystallization in thin GeTe films capped with SiOx, using optical curvature measurements. A 150 MPa tensile stress buildup is measured when the 100 nm thick film crystallizes. Stress evolution is a result of viscosity increase with time and a tentative model is proposed that renders qualitatively the observed features

    Mental disorders, disability and treatment gap in a protracted refugee setting

    No full text
    Studies have shown high levels of distress and mental disorder among people living in refugee camps, yet none has confirmed diagnosis through clinical reappraisal
    corecore