3,360 research outputs found
CT attenuation analysis of carotid intraplaque hemorrhage
Background and Purpose: Intraplaque hemorrhage is considered a leading parameter of carotid plaque vulnerability. Our purpose was to assess the CT characteristics of intraplaque hemorrhage with histopathologic correlation to identify features that allow for confirming or ruling out the intraplaque hemorrhage. MATERIALS AND METHODS: This retrospective study included 91 patients (67 men; median age, 657 years; age range, 41-83 years) who underwent CT angiography and carotid endarterectomy from March 2010 to May 2013. Histopathologic analysis was performed for the tissue characterization and identification of intraplaque hemorrhage. Two observers assessed the plaque's attenuation values by using an ROI (≤1 and ≥2 mm2). Receiver operating characteristic curve, Mann-Whitney, and Wilcoxon analyses were performed. RESULTS: A total of 169 slices were assessed (59 intraplaque hemorrhage, 63 lipid-rich necrotic core, and 47 fibrous); the average values of the intraplaque hemorrhage, lipid-rich necrotic core, and fibrous tissue were 17.475 Hounsfield units (HU) and 18.407 HU, 39.476 HU and 48.048 HU, and 91.66 HU and 93.128 HU, respectively, before and after the administration of contrast medium. The Mann-Whitney test showed a statistically significant difference of HU values both in basal and after the administration of contrast material phase. Receiver operating characteristic analysis showed a statistical association between intraplaque hemorrhage and low HU values, and a threshold of 25 HU demonstrated the presence of intraplaque hemorrhage with a sensitivity and specificity of 93.22% and 92.73%, respectively. The Wilcoxon test showed that the attenuation of the plaque before and after administration of contrast material is different (intraplaque hemorrhage, lipid-rich necrotic core, and fibrous tissue had P values of .006, .0001, and .018, respectively). CONCLUSIONS: The results of this preliminary study suggest that CT can be used to identify the presence of intraplaque hemorrhage according to the attenuation. A threshold of 25 HU in the volume acquired after the administration of contrast medium is associated with an optimal sensitivity and specificity. Special care should be given to the correct identification of the ROI
Solar neutrino detection in a large volume double-phase liquid argon experiment
Precision measurements of solar neutrinos emitted by specific nuclear
reaction chains in the Sun are of great interest for developing an improved
understanding of star formation and evolution. Given the expected neutrino
fluxes and known detection reactions, such measurements require detectors
capable of collecting neutrino-electron scattering data in exposures on the
order of 1 ktonne yr, with good energy resolution and extremely low background.
Two-phase liquid argon time projection chambers (LAr TPCs) are under
development for direct Dark Matter WIMP searches, which possess very large
sensitive mass, high scintillation light yield, good energy resolution, and
good spatial resolution in all three cartesian directions. While enabling Dark
Matter searches with sensitivity extending to the "neutrino floor" (given by
the rate of nuclear recoil events from solar neutrino coherent scattering),
such detectors could also enable precision measurements of solar neutrino
fluxes using the neutrino-electron elastic scattering events. Modeling results
are presented for the cosmogenic and radiogenic backgrounds affecting solar
neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at
LNGS depth (3,800 meters of water equivalent). The results show that such a
detector could measure the CNO neutrino rate with ~15% precision, and
significantly improve the precision of the 7Be and pep neutrino rates compared
to the currently available results from the Borexino organic liquid
scintillator detector.Comment: 21 pages, 7 figures, 6 table
First Observation of the Rare Decay Mode K-long -> e+ e-
In an experiment designed to search for and study very rare two-body decay
modes of the K-long, we have observed four examples of the decay K-long -> e+
e-, where the expected background is 0.17+-0.10 events. This observation
translates into a branching fraction of 8.7^{+5.7}_{-4.1} X 10^{-12},
consistent with recent theoretical predictions. This result represents by far
the smallest branching fraction yet measured in particle physics.Comment: 9 pages, 3 figure
Standards for conducting and reporting consensus and recommendation documents: European Society of Cardiovascular Radiology policy from the Guidelines Committee.
Cardiovascular imaging is exponentially increasing in the diagnosis, risk stratification, and therapeutic management of patients with cardiovascular disease. The European Society of Cardiovascular Radiology (ESCR) is a non-profit scientific medical society dedicated to promoting and coordinating activities in cardiovascular imaging. The purpose of this paper, written by ESCR committees and Executive board members and approved by the ESCR Executive Board and Guidelines committee, is to codify a standardized approach to creating ESCR scientific documents. Indeed, consensus development methods must be adopted to ensure transparent decision-making that optimizes national and global health and reaches a certain scientific credibility. ESCR consensus documents developed based on a rigorous methodology will improve their scientific impact on the management of patients with cardiac involvement. CRITICAL RELEVANCE STATEMENT: This document aims to codify the methodology for producing consensus documents of the ESCR. These ESCR indications will broaden the scientific quality and credibility of further publications and, consequently, the impact on the diagnostic management of patients with cardiac involvement. KEY POINTS: Cardiovascular imaging is exponentially increasing for diagnosis, risk stratification, and therapeutic management. The ESCR is committed to promoting cardiovascular imaging. A rigorous methodology for ESCR consensus documents will improve their scientific impact
Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia
We present a comparison of our results from ground-based observations of
asteroid (21) Lutetia with imaging data acquired during the flyby of the
asteroid by the ESA Rosetta mission. This flyby provided a unique opportunity
to evaluate and calibrate our method of determination of size, 3-D shape, and
spin of an asteroid from ground-based observations. We present our 3-D
shape-modeling technique KOALA which is based on multi-dataset inversion. We
compare the results we obtained with KOALA, prior to the flyby, on asteroid
(21) Lutetia with the high-spatial resolution images of the asteroid taken with
the OSIRIS camera on-board the ESA Rosetta spacecraft, during its encounter
with Lutetia. The spin axis determined with KOALA was found to be accurate to
within two degrees, while the KOALA diameter determinations were within 2% of
the Rosetta-derived values. The 3-D shape of the KOALA model is also confirmed
by the spectacular visual agreement between both 3-D shape models (KOALA pre-
and OSIRIS post-flyby). We found a typical deviation of only 2 km at local
scales between the profiles from KOALA predictions and OSIRIS images, resulting
in a volume uncertainty provided by KOALA better than 10%. Radiometric
techniques for the interpretation of thermal infrared data also benefit greatly
from the KOALA shape model: the absolute size and geometric albedo can be
derived with high accuracy, and thermal properties, for example the thermal
inertia, can be determined unambiguously. We consider this to be a validation
of the KOALA method. Because space exploration will remain limited to only a
few objects, KOALA stands as a powerful technique to study a much larger set of
small bodies using Earth-based observations.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in P&S
Results from the first use of low radioactivity argon in a dark matter search
Liquid argon is a bright scintillator with potent particle identification
properties, making it an attractive target for direct-detection dark matter
searches. The DarkSide-50 dark matter search here reports the first WIMP search
results obtained using a target of low-radioactivity argon. DarkSide-50 is a
dark matter detector, using two-phase liquid argon time projection chamber,
located at the Laboratori Nazionali del Gran Sasso. The underground argon is
shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3
relative to atmospheric argon. We report a background-free null result from
(2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with
our previous search using an atmospheric argon, the 90 % C.L. upper limit on
the WIMP-nucleon spin-independent cross section based on zero events found in
the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43
cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).Comment: Accepted by Phys. Rev.
Credibility and adjustment: gold standards versus currency boards
It is often maintained that currency boards (CBs) and gold standards (GSs) are alike in that they are stringent monetary rules, the two basic features of which are high credibility of monetary authorities and the existence of automatic adjustment (non discretionary) mechanism. This article includes a comparative analysis of these two types of regimes both from the perspective of the sources and mechanisms of generating confidence and credibility, and the elements of operation of the automatic adjustment mechanism. Confidence under the GS is endogenously driven, whereas it is exogenously determined under the CB. CB is a much more asymmetric regime than GS (the adjustment is much to the detriment of peripheral countries) although asymmetry is a typical feature of any monetary regime. The lack of credibility is typical for peripheral countries and cannot be overcome completely even by “hard” monetary regimes.http://deepblue.lib.umich.edu/bitstream/2027.42/40078/3/wp692.pd
Inclusive Search for Anomalous Production of High-pT Like-Sign Lepton Pairs in Proton-Antiproton Collisions at sqrt{s}=1.8 TeV
We report on a search for anomalous production of events with at least two
charged, isolated, like-sign leptons with pT > 11 GeV/c using a 107 pb^-1
sample of 1.8 TeV ppbar collisions collected by the CDF detector. We define a
signal region containing low background from Standard Model processes. To avoid
bias, we fix the final cuts before examining the event yield in the signal
region using control regions to test the Monte Carlo predictions. We observe no
events in the signal region, consistent with an expectation of
0.63^(+0.84)_(-0.07) events. We present 95% confidence level limits on new
physics processes in both a signature-based context as well as within a
representative minimal supergravity (tanbeta = 3) model.Comment: 15 pages, 4 figures. Minor textual changes, cosmetic improvements to
figures and updated and expanded reference
Evidence for t\bar{t}\gamma Production and Measurement of \sigma_t\bar{t}\gamma / \sigma_t\bar{t}
Using data corresponding to 6.0/fb of ppbar collisions at sqrt(s) = 1.96 TeV
collected by the CDF II detector, we present a cross section measurement of
top-quark pair production with an additional radiated photon. The events are
selected by looking for a lepton, a photon, significant transverse momentum
imbalance, large total transverse energy, and three or more jets, with at least
one identified as containing a b quark. The ttbar+photon sample requires the
photon to have 10 GeV or more of transverse energy, and to be in the central
region. Using an event selection optimized for the ttbar+photon candidate
sample we measure the production cross section of, and the ratio of cross
sections of the two samples. Control samples in the dilepton+photon and
lepton+photon+\met, channels are constructed to aid in decay product
identification and background measurements. We observe 30 ttbar+photon
candidate events compared to the standard model expectation of 26.9 +/- 3.4
events. We measure the ttbar+photon cross section to be 0.18+0.08 pb, and the
ratio of the cross section of ttbar+photon to ttbar to be 0.024 +/- 0.009.
Assuming no ttbar+photon production, we observe a probability of 0.0015 of the
background events alone producing 30 events or more, corresponding to 3.0
standard deviations.Comment: 9 pages, 3 figure
Observation and Mass Measurement of the Baryon
We report the observation and measurement of the mass of the bottom, strange
baryon through the decay chain , where
, , and .
Evidence for observation is based on a signal whose probability of arising from
the estimated background is 6.6 x 10^{-15}, or 7.7 Gaussian standard
deviations. The mass is measured to be (stat.) (syst.) MeV/.Comment: Minor text changes for the second version. Accepted by Phys. Rev.
Let
- …