3,592 research outputs found

    Long-Term Carbon Sequestration in Pine Forests under Different Silvicultural and Climatic Regimes in Spain

    Get PDF
    Proactive silviculture treatments (e.g., thinning) may increase C sequestration contributing to climate change mitigation, although, there are still questions about this effect in Mediterranean pine forests. The aim of this research was to quantify the storage of biomass and soil organic carbon in Pinus forests along a climatic gradient from North to South of the Iberian Peninsula. Nine experimental Pinus spp trials were selected along a latitudinal gradient from the pre-Pyrenees to southern Spain. At each location, a homogeneous area was used as the operational scale, and three thinning intensity treatments: unthinned or control (C), intermediate thinning (LT, removal of 30–40% of the initial basal area) and heavy thinning (HT, removal of 50–60%) were conducted. Growth per unit area (e.g., expressed as basal area increment-BAI), biomass, and Soil Organic Carbon (SOC) were measured as well as three sets of environmental variables (climate, soil water availability and soil chemical and physical characteristics). One-way ANOVA and Structural Equation Modelling (SEM) were used to study the effect of thinning and environmental variables on C sequestration. Biomass and growth per unit area were higher in the control than in the thinning treatments, although differences were only significant for P. halepensis. Radial growth recovered after thinning in all species, but it was faster in the HT treatments. Soil organic carbon (SOC10, 0–10 cm depth) was higher in the HT treatments for P. halepensis and P. sylvestris, but not for P. nigra. SEM showed that Pinus stands of the studied species were beneficed by HT thinning, recovering their growth quickly. The resulting model explained 72% of the variation in SOC10 content, and 89% of the variation in silvicultural condition (basal area and density) after thinning. SOC10 was better related to climate than to silvicultural treatments. On the other hand, soil chemical and physical characteristics did not show significant influence over SOC10- Soil water availability was the latent variable with the highest influence over SOC10. This work is a new contribution that shows the need for forest managers to integrate silviculture and C sequestration in Mediterranean pine plantations

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (secθ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (secθ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Study of DJ meson decays to D+π−, D0π+ and D∗+π− final states in pp collisions

    Get PDF
    A study of D+π−, D0π+ and D∗+π− final states is performed using pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV with the LHCb detector. The D1(2420)0 resonance is observed in the D∗+π− final state and the D∗2(2460) resonance is observed in the D+π−, D0π+ and D∗+π− final states. For both resonances, their properties and spin-parity assignments are obtained. In addition, two natural parity and two unnatural parity resonances are observed in the mass region between 2500 and 2800 MeV. Further structures in the region around 3000 MeV are observed in all the D∗+π−, D+π− and D0π+ final states

    Study of B0(s)→K0Sh+h′− decays with first observation of B0s→K0SK±π∓ and B0s→K0Sπ+π−

    Get PDF
    A search for charmless three-body decays of B 0 and B0s mesons with a K0S meson in the final state is performed using the pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV recorded by the LHCb experiment. Branching fractions of the B0(s)→K0Sh+h′− decay modes (h (′) = π, K), relative to the well measured B0→K0Sπ+π− decay, are obtained. First observation of the decay modes B0s→K0SK±π∓ and B0s→K0Sπ+π− and confirmation of the decay B0→K0SK±π∓ are reported. The following relative branching fraction measurements or limits are obtained B(B0→K0SK±π∓)B(B0→K0Sπ+π−)=0.128±0.017(stat.)±0.009(syst.), B(B0→K0SK+K−)B(B0→K0Sπ+π−)=0.385±0.031(stat.)±0.023(syst.), B(B0s→K0Sπ+π−)B(B0→K0Sπ+π−)=0.29±0.06(stat.)±0.03(syst.)±0.02(fs/fd), B(B0s→K0SK±π∓)B(B0→K0Sπ+π−)=1.48±0.12(stat.)±0.08(syst.)±0.12(fs/fd)B(B0s→K0SK+K−)B(B0→K0Sπ+π−)∈[0.004;0.068]at90%CL

    Observation of the decay BcJ/ψK+Kπ+B_c \rightarrow J/\psi K^+ K^- \pi^+

    Get PDF
    The decay BcJ/ψK+Kπ+B_c\rightarrow J/\psi K^+ K^- \pi^+ is observed for the first time, using proton-proton collisions collected with the LHCb detector corresponding to an integrated luminosity of 3fb1^{-1}. A signal yield of 78±1478\pm14 decays is reported with a significance of 6.2 standard deviations. The ratio of the branching fraction of \B_c \rightarrow J/\psi K^+ K^- \pi^+ decays to that of BcJ/ψπ+B_c \rightarrow J/\psi \pi^+ decays is measured to be 0.53±0.10±0.050.53\pm 0.10\pm0.05, where the first uncertainty is statistical and the second is systematic.Comment: 18 pages, 2 figure

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 6060^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)

    Get PDF
    Contributions of the Pierre Auger Collaboration to the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The NetherlandsComment: 24 proceedings, the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015
    corecore