45 research outputs found

    Simplified Night Sky Display System

    Get PDF
    A document describes a simple night sky display system that is portable, lightweight, and includes, at most, four components in its simplest configuration. The total volume of this system is no more than 10(sup 6) cm(sup 3) in a disassembled state, and weighs no more than 20 kilograms. The four basic components are a computer, a projector, a spherical light-reflecting first surface and mount, and a spherical second surface for display. The computer has temporary or permanent memory that contains at least one signal representing one or more images of a portion of the sky when viewed from an arbitrary position, and at a selected time. The first surface reflector is spherical and receives and reflects the image from the projector onto the second surface, which is shaped like a hemisphere. This system may be used to simulate selected portions of the night sky, preserving the appearance and kinesthetic sense of the celestial sphere surrounding the Earth or any other point in space. These points will then show motions of planets, stars, galaxies, nebulae, and comets that are visible from that position. The images may be motionless, or move with the passage of time. The array of images presented, and vantage points in space, are limited only by the computer software that is available, or can be developed. An optional approach is to have the screen (second surface) self-inflate by means of gas within the enclosed volume, and then self-regulate that gas in order to support itself without any other mechanical support

    Knowledge based and interactive control for the Superfluid Helium On-orbit Transfer Project

    Get PDF
    NASA's Superfluid Helium On-Orbit Transfer (SHOOT) project is a Shuttle-based experiment designed to acquire data on the properties of superfluid helium in micro-gravity. Aft Flight Deck Computer Software for the SHOOT experiment is comprised of several monitoring programs which give the astronaut crew visibility into SHOOT systems and a rule based system which will provide process control, diagnosis and error recovery for a helium transfer without ground intervention. Given present Shuttle manifests, this software will become the first expert system to be used in space. The SHOOT Command and Monitoring System (CMS) software will provide a near real time highly interactive interface for the SHOOT principal investigator to control the experiment and to analyze and display its telemetry. The CMS software is targeted for all phases of the SHOOT project: hardware development, pre-flight pad servicing, in-flight operations, and post-flight data analysis

    NYSDOT Living Snow Fence Training Program 2012

    Get PDF
    New York State Department of Transportation (NYSDOT) Snow Fence Training: plant selection, growth, effects, characteristics, change, site selection, site preparation, existing vegetation, weed control, barriers, root stock, post plant care, limitation

    NYSDOT Living Snow Fence Training

    Get PDF
    New York State Department of Transportation (NYSDOT) Living Snow Fences Training: challenges, structure, benefits, costs, limitations, economics, transport, effects, development, growth, design, conditions, site assesmen

    Planetary Transits of the Trans-Atlantic Exoplanet Survey- Candidate TrES-1b

    Full text link
    The AAVSO compiled 10,560 CCD observations of the suspected exoplanet transit object TrES-1b covering seven complete transit windows, three windows of partial coverage, and coverage of baseline non-transit periods. Visual inspection of the light curves reveals the presence of slight humps at the egress points of some transits. A boot strap Monte Carlo simulation was applied to the data to confirm that the humps exist to a statistically significant degree. However, it does not rule out systemic effects which will be tested with campaigns in the 2005 observing season

    The CANDELS/SHARDS multiwavelength catalog in GOODS-N : photometry, photometric redshifts, stellar masses, emission-line fluxes, and star formation rates

    Get PDF
    We present a WFC3 F160W (H-band) selected catalog in the CANDELS/GOODS-N field containing photometry from the ultraviolet (UV) to the far-infrared (IR), photometric redshifts, and stellar parameters derived from the analysis of the multiwavelength data. The catalog contains 35,445 sources over the 171 arcmin(2) of the CANDELS F160W mosaic. The 5 sigma detection limits (within an aperture of radius 0 ''.17) of the mosaic range between H = 27.8, 28.2, and 28.7 in the wide, intermediate, and deep regions, which span approximately 50%, 15%, and 35% of the total area. The multiwavelength photometry includes broadband data from the UV (U band from KPNO and LBC), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), near-to-mid IR (HST/WFC3 F105W, F125W, F140W, and F160W; Subaru/MOIRCS Ks; CFHT/Megacam K; and Spitzer/IRAC 3.6, 4.5, 5.8, and 8.0 mu m), and far-IR (Spitzer/MIPS 24 mu m, HERSCHEL/PACS 100 and 160 mu m, SPIRE 250, 350 and 500 mu m) observations. In addition, the catalog also includes optical medium-band data (R similar to 50) in 25 consecutive bands, lambda = 500-950 nm, from the SHARDS survey and WFC3 IR spectroscopic observations with the G102 and G141 grisms (R similar to 210 and 130). The use of higher spectral resolution data to estimate photometric redshifts provides very high, and nearly uniform, precision from z = 0-2.5. The comparison to 1485 good-quality spectroscopic redshifts up to z similar to 3 yields Delta z/(1 + z(spec)) = 0.0032 and an outlier fraction of eta = 4.3%. In addition to the multiband photometry, we release value-added catalogs with emission-line fluxes, stellar masses, dust attenuations, UV- and IR-based star formation rates, and rest-frame colors

    CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey - The Hubble Space Telescope Observations, Imaging Data Products and Mosaics

    Get PDF
    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z∌1.5−8z\sim1.5-8, and to study Type Ia SNe beyond z>1.5z>1.5. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers \sim125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of \sim800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.Comment: 39 pages, 25 figure

    CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey

    Get PDF
    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z>1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10^9 M_\odot to z \approx 2, reaching the knee of the ultraviolet luminosity function (UVLF) of galaxies to z \approx 8. The survey covers approximately 800 arcmin^2 and is divided into two parts. The CANDELS/Deep survey (5\sigma\ point-source limit H=27.7 mag) covers \sim 125 arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 5\sigma\ point-source limit of H \gtrsim 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.Comment: Submitted to Astrophysical Journal Supplement Series; Revised version, subsequent to referee repor

    CANDELS multi-wavelength catalogs: source identification and photometry in the CANDELS Extended Groth Strip

    Get PDF
    We present a 0.4-8?m multi-wavelength photometric catalog in the Extended Groth Strip (EGS) field. This catalog is built on the Hubble Space Telescope (HST) WFC3 and ACS data from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), and it incorporates the existing HST data from the All-wavelength Extended Groth strip International Survey (AEGIS) and the 3D-HST program. The catalog is based on detections in the F160W band reaching a depth of F160W=26.62 AB (90% completeness, point-sources). It includes the photometry for 41457 objects over an area of ~ 206 arcmin2 in the following bands: HST ACS F606W and F814W; HST WFC3 F125W, F140W and F160W; CFHT/Megacam u?, g?, r?, i? and z?; CFHT/WIRCAM J, H and KS; Mayall/NEWFIRM J1, J2, J3, H1, H2, K; Spitzer IRAC 3.6?m, 4.5?m, 5.8?m and 8.0?m. We are also releasing value-added catalogs that provide robust photometric redshifts and stellar mass measurements. The catalogs are publicly available through the CANDELS repository

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore