3,296 research outputs found

    [C-11]PIB PET imaging can detect white and grey matter demyelination in a non-human primate model of progressive multiple sclerosis

    Get PDF
    Background: Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system. Its diagnosis is clinical, often confirmed by magnetic resonance imaging. This image modality, however, is not ideal for discrimination of demyelination in grey and white matter regions from inflammatory lesions. Positron Emission Tomography (PET), using specific radiopharmaceuticals, can be a tool to differentiate between these processes. The radiopharmaceutical [C-11]PIB is widely used for detection of beta-amyloid plaques, but has also been suggested for the analysis of myelin content due to its consistent uptake in white matter. The aim of this study was to evaluate [C-11]PIB PET imaging as a tool for detecting demyelinated regions in white and grey matter of non-human primate model of progressive MS. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in marmosets by injection of re-combinant human myelin oligodendrocyte glycoprotein (rhMOG) emulsified in either Incomplete Freund's Adjuvant (IFA) or Complete Freund's Adjuvant (CFA). [C-11]PIB PET images were acquired prior to immunization (baseline) and after symptoms were present (end of experiment). Brain tissue was isolated for histochemical analysis. Results: All rhMOG/IFA-treated and rhMOG/CFA-treated animals showed clinical signs of EAE. The rhMOG/CFA group presented a significant [C-11]PIB uptake reduction only in the left motor cortex (9%, P = 0.011). For the rhMOG/IFA group, significant decrease in [C-11]PIB uptake was observed in the whole brain (15%, P = 0.015), in the right hemisphere of body of corpus callosum (34%, P = 0.02), splenium of corpus callosum (38%, P = 0.004), hippocampus (19%, P = 0.036), optic tract (13%, P = 0.025), thalamus (14%, P = 0.041), Globus pallidus (23%, P = 0.017), head of caudate nucleus (25%, P = 0.045), tail of caudate nucleus (29%, P = 0.003), putamen (28%, P = 0.047) and left hemisphere of body of corpus callosum (14%, P = 0.037) and head of caudate nucleus (23%, P = 0.023). [C-11]PIB uptake significantly correlated with luxol fast blue histology (myelin marker), both in the rhMOG/IFA (r(2) = 0.32, P <0.0001) and the rhMOG/CFA group (r(2) = 0.46, P <0.0001). Conclusion: [C-11]PIB PET imaging is an efficient tool for detecting demyelination in grey and white matter, in a non-human primate model of progressive MS

    Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope

    Full text link
    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2-degree angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4-sigma detection of the lensing signal measures the amplitude of density fluctuations to 12%.Comment: 4 pages, 4 figures, replaced title and author list with version accepted by Physical Review Letters. Likelihood code can be downloaded from http://bccp.lbl.gov/~sudeep/ACTLensLike.htm

    Prime Focus Spectrograph - Subaru's future -

    Full text link
    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru's wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a wide-field metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms each: the wavelength ranges from 0.38 {\mu}m to 1.3 {\mu}m will be simultaneously observed with an average resolving power of 3000. Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of 2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, & JHU in USA, LAM in France, ASIAA in Taiwan, and NAOJ/Subaru.Comment: 13 pages, 11 figures, submitted to "Ground-based and Airborne Instrumentation for Astronomy IV, Ian S. McLean, Suzanne K. Ramsay, Hideki Takami, Editors, Proc. SPIE 8446 (2012)

    Secular Evolution and the Formation of Pseudobulges in Disk Galaxies

    Full text link
    We review internal processes of secular evolution in galaxy disks, concentrating on the buildup of dense central features that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. As an existence proof, we review how bars rearrange disk gas into outer rings, inner rings, and gas dumped into the center. In simulations, this gas reaches high densities that plausibly feed star formation. In the observations, many SB and oval galaxies show central concentrations of gas and star formation. Star formation rates imply plausible pseudobulge growth times of a few billion years. If secular processes built dense central components that masquerade as bulges, can we distinguish them from merger-built bulges? Observations show that pseudobulges retain a memory of their disky origin. They have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) large ratios of ordered to random velocities indicative of disk dynamics, (3) small velocity dispersions, (4) spiral structure or nuclear bars in the bulge part of the light profile, (5) nearly exponential brightness profiles, and (6) starbursts. These structures occur preferentially in barred and oval galaxies in which secular evolution should be rapid. So the cleanest examples of pseudobulges are recognizable. Thus a large variety of observational and theoretical results contribute to a new picture of galaxy evolution that complements hierarchical clustering and merging.Comment: 92 pages, 21 figures in 30 Postscript files; to appear in Annual Review of Astronomy and Astrophysics, Vol. 42, 2004, in press; for a version with full resolution figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm

    Mutation of Ser172 in Yeast β Tubulin Induces Defects in Microtubule Dynamics and Cell Division

    Get PDF
    Ser172 of β tubulin is an important residue that is mutated in a human brain disease and phosphorylated by the cyclin-dependent kinase Cdk1 in mammalian cells. To examine the role of this residue, we used the yeast S. cerevisiae as a model and produced two different mutations (S172A and S172E) of the conserved Ser172 in the yeast β tubulin Tub2p. The two mutants showed impaired cell growth on benomyl-containing medium and at cold temperatures, altered microtubule (MT) dynamics, and altered nucleus positioning and segregation. When cytoplasmic MT effectors Dyn1p or Kar9p were deleted in S172A and S172E mutants, cells were viable but presented increased ploidy. Furthermore, the two β tubulin mutations exhibited synthetic lethal interactions with Bik1p, Bim1p or Kar3p, which are effectors of cytoplasmic and spindle MTs. In the absence of Mad2p-dependent spindle checkpoint, both mutations are deleterious. These findings show the importance of Ser172 for the correct function of both cytoplasmic and spindle MTs and for normal cell division

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury

    Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV

    Get PDF
    The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p &gt; 2 GeV/c in the pseudorapidity range 2 &lt; η &lt; 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore