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Abstract 

Background: Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the 

central nervous system. Its diagnosis is clinical, often confirmed by magnetic resonance 

imaging. This image modality, however, is not ideal for discrimination of demyelination in grey 

and white matter regions from inflammatory lesions. Positron Emission Tomography (PET), 

using specific radiopharmaceuticals, can be a tool to differentiate between these processes. The 

radiopharmaceutical [
11

C]PIB is widely used for detection of β-amyloid plaques, but has also 

been suggested for the analysis of myelin content due to its consistent uptake in white matter. 

The aim of this study was to evaluate [
11

C]PIB PET imaging as a tool for detecting 

demyelinated regions in white and grey matter of non-human primate model of progressive MS. 

Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in marmosets by 

injection of recombinant human myelin oligodendrocyte glycoprotein (rhMOG) emulsified in 

either Incomplete Freund’s Adjuvant (IFA) or Complete Freund's Adjuvant (CFA). [
11

C]PIB 

PET images were acquired prior to immunization (baseline) and after symptoms were present 

(end of experiment). Brain tissue was isolated for histochemical analysis. Results: All 

rhMOG/IFA-treated and rhMOG/CFA-treated animals showed clinical signs of EAE. The 

rhMOG/CFA group presented a significant [
11

C]PIB uptake reduction only in the left motor 

cortex (9 %, P = 0.011). For the rhMOG/IFA group, significant decrease in [
11

C]PIB uptake was 

observed in the whole brain (15 %, P = 0.015), in the right hemisphere of body of corpus 

callosum (34 %, P = 0.02), splenium of corpus callosum (38 %, P = 0.004), hippocampus (19%, 

P = 0.036), optic tract (13 %, P = 0.025), thalamus (14 %, P = 0.041), Globus pallidus (23 %, P 

= 0.017), head of caudate nucleus (25 %, P = 0.045), tail of caudate nucleus (29 %, P = 0.003), 

putamen (28 %, P = 0.047) and left hemisphere of body of corpus callosum (14 %, P = 0.037) 

and head of caudate nucleus (23 %, P = 0.023).  [
11

C]PIB uptake significantly correlated with 

luxol fast blue histology (myelin marker), both in the rhMOG/IFA (r
2
= 0.32, P < 0.0001) and 

the rhMOG/CFA group (r
2
= 0.46, P < 0.0001). Conclusion: [

11
C]PIB PET imaging is an 

efficient tool for detecting demyelination in grey and white matter, in a non-human primate 

model of progressive MS. 

Keywords: Multiple sclerosis; EAE marmoset model; PET imaging; Pittsburgh compound B 
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Introduction 

 Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central 

nervous system (CNS) (1). MS can present as different phenotypes: 1) Relapsing-remitting 

multiple sclerosis, characterized by periods of attacks and recovery and 2) Progressive multiple 

sclerosis which is characterized by worsening of disability that can be present either from 

disease onset (Primary Progressive) or after a relapsing-remitting course (Secondary 

Progressive) (2). The pathological feature of multiple sclerosis is the formation of multiple focal 

demyelinated areas in the CNS, both in white and grey matter (3). 

Studies with animal models have been helpful to increase our understanding of the 

human disease (4). The experimental autoimmune encephalomyelitis model (EAE) presents 

MS-like features in brain and spinal cord, including white and grey matter lesions (5). Although 

the EAE model can be induced in several animal species, the common marmoset (Callithrix 

jacchus) EAE model has emerged as the most suitable animal model of progressive MS, 

because it closely mimic the MS disease characteristics in humans. The most widely used 

methods to induce EAE are an intradermal injection of recombinant human myelin 

oligodendrocyte glycoprotein (rhMOG-125) or synthetic human myelin oligodendrocyte 

glycoprotein peptide for amino acids 34-56 (MOG 34-56) in combination with incomplete 

Freund's adjuvant (IFA) or complete Freund's adjuvant (CFA) (6), although immunization with 

rhMOG-125 more closely mimics autoimmune development in MS patients (7). 

Non-invasive in vivo imaging tools are also of great relevance in MS. Magnetic 

resonance imaging (MRI) is the most frequently used imaging modality for MS diagnosis and 

monitoring of disease progression. However, this modality has limitations in differentiating 

between inflammation, axon loss, demyelination and remyelination (8).  Positron emission 

tomography (PET) is an imaging modality able to detect changes at the cellular and molecular 

level and may be able to differentiate between inflammation, myelin content, and 

neurodegeneration, using process-specific PET tracers. The first human myelin PET imaging 
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study in patients was performed in 2011(9), using [
11

C]PIB as a PET tracer, and after that, 

studies in rodent animal models were performed (10-12). [
11

C]PIB has been widely used for 

imaging β-amyloid plaques in Alzheimer´s disease, but its high binding to white matter, 

independent of the presence of β-amyloid plaques (13), led to the investigation of its potential as 

a myelin PET tracer (9).  

Considering that [
11

C]PIB PET could be an useful tool for quantifying myelin content, 

this study aimed to evaluate the feasibility of detecting demyelination in both grey and white 

matter in non-human primate model of progressive multiple sclerosis.  

 

Materials and Methods 

Animals 

 All experiments with marmosets were approved by the Ethical Committee of the 

Federal University of São Paulo (UNIFESP 2628300415) and Faculty of Medicine of the 

University of São Paulo (FMUSP 056/15). The Callithrix jacchus, popularly known as 

marmosets (n = 10, 7 females and 3 males) were provided by the Neurophysiology Laboratory 

of UNIFESP. Animals were kept alone in spacious cages enriched with branches and ropes in a 

temperature and humidity controlled room with a 12h-light cycle. Animals were fed in the 

morning with 5 types of fruit, and in the afternoon with vegetables and proteins, water was 

available ad libitum. The animals were kept in the primate facility throughout the experimental 

period and transported to the nuclear medicine laboratory only for PET image acquisitions. The 

transport of the animals was authorized by The Secretariat for the Environment of the State of 

São Paulo (SMA - SP). 

 Marmosets were divided into two groups (n = 5), according to the immunization 

protocol, using either rhMOG/IFA emulsion or rhMOG/CFA emulsion as the immunizing 

agent.   
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Experimental autoimmune encephalomyelitis induction 

 The EAE model was induced as previously reported  (7, 14, 15). The emulsions for 

EAE induction consisted of 100 μg rhMOG dissolved in 200 μL of PBS and emulsified in 200 

μL of either IFA (Becton, Dickinson and Company, BD263910) or  CFA (Sigma-Aldrich, 

F5881). In anesthetized animals (3% isoflurane in oxygen) the emulsion (100 µL) were 

intradermally inoculated into 4 sites of inguinal and axillary regions of dorsal skin (400 μL 

emulsion injected per animal). 

 The marmosets were evaluated daily for neurological signs (15): 0 = no clinical signs; 

0.5 = apathy, loss of appetite, altered walking pattern without ataxia; 1 = lethargy, anorexia, loss 

of tail tonus, tremor; 2 = ataxia, optic disease; 2.5 = paraparesis or monoparesis, sensory loss; 3 

= paraplegia or hemiplegia; 4 = quadriplegia; 5 = spontaneous death due to EAE (15). If no 

clinical symptoms were detected until 4 weeks after immunization, the animal received a 

booster-immunization, which was repeated every 4 weeks until symptoms appeared. Body 

weight was checked twice a week.  

  

[
11

C]PIB production and PET imaging  

 [
11

C]PIB was produced at Nuclear Medicine Center, FMUSP, with a radiochemical 

purity > 95% and a molar activity > 20 GBq/µmol.  

[
11

C]PIB PET was performed at two different time points: baseline (i.e. before EAE 

induction) and after clinical symptoms had appeared. The definition of the second time point 

was based on reaching one of the following criteria: 1) Score 3; 2) Score 2 – 2.5 and 10% body 

weight loss; 3) Score 1 - 2 and persistent body weight loss (more than 10 days) and 4) Body 

weight loss ≥ 20%.   

The marmosets were anesthetized with isoflurane mixed with oxygen and then injected 

in the femoral or penile vein with 37-111 MBq of [
11

C]PIB. Thirty minutes after injection, 

animals were positioned with their head in the center of the field of view of a small-animal PET 
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scanner (Triumph™ - Gamma Medica-Ideas, Northridge, CA, U.S.A). A static image was 

acquired for 30 min. The body temperature of the animals was maintained by heating pads and 

breath rate were monitored. After the scans, the animals were either allowed to recover in their 

home cages (baseline) or euthanized (end of experiment) with 1 mL of intraperitoneal 

pentobarbital (0.3 mg/mL). The brain was dissected for myelin histochemistry.  

 

PET image reconstruction and analysis 

 Emission sinograms were iteratively reconstructed into a single frame of 30 min (OSEM 

3D; 20 iterations and 4 subsets), after being normalized and corrected for attenuation, scatter, 

and radioactivity decay. PET image analysis was performed with PMOD 3.4 software 

(PMOD™ Technologies Ltd, Switzerland). The scans were manually co-registered to a T2 

weighted MRI template 

(http://brainatlas.brain.riken.jp/marmoset/modules/xoonips/listitem.php?index_id=71) to 

facilitate the identification of different brain regions.  

 Volumes of interest (VOIs) for 39 brain regions were drawn on the MRI template based 

on the marmoset brain atlas (16). An extracellular VOI of a nonspecific [
11

C]PIB binding area 

was also drawn, being the muscle attached to the skull selected as reference region (17) since no 

demyelination would occur in this area, meaning that this region, also present in the FOV, 

would not be affected by disease stage, clinical symptoms or booster-immunization; which 

cannot be guaranteed by the regions inside the brain, since all regions could present lesion in 

some stage. A reference region was necessary for the quantification due to the fact that some 

tracer injections were not perfectly performed (difficulties in vein punction of the marmoset) 

and the amount of injected activity injected could not accurately be determined.  

The tracer uptake is presented as brain VOI-to-muscle VOI uptake ratio. 

 

In vitro assays 
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[
11

C]PIB uptake in the brain was also analyzed by in vitro autoradiography as 

previously described (18). Dried sections were exposed to a high resolution phosphor storage 

screen for 2 h and then, scanned by a Typhoon FLA 9500 biomolecular imager (GE 

Healthcare).  

The level of myelin in different brain areas was assessed by luxol fast blue (LFB) 

histochemistry as previously described (19). In each brain region (covering the whole brain – 20 

to 30 samples per animal), areas with lesion and non-lesion were drawn and the integrated 

density ratio was calculated by Image J software (NIH/USA). In case no lesion was identified, 

the ratio was calculated by drawing two normal areas in the same brain region.  

 

Statistical analysis 

 Results are presented as mean ± standard error (SPSS Statistics 20 Software, Armonk, 

NY: IBM Corp, USA and GraphPad Prism 6 Software, La Jolla, CA, USA). The data (animal 

model, PET imaging and in vitro assays) passed the Shapiro-Wilk test for normality and 

therefore parametric tests were applied in the analysis. The PET imaging data was analyzed by a 

3-way mixed ANOVA with repeated measures (considering groups as between and time and 

VOIs as within-subject factors). Post-hoc paired t-test (Bonferroni) with multiple comparison 

correction was performed to test tracer uptake differences between the baseline and end of 

experiment scan for each VOI. An unpaired Student's t-test was used for comparing the groups 

in the end of experiment time point (clinical symptoms, number of immunizations and body 

weight loss). Pearson correlation was used in the correlation between histological and in vivo 

PET imaging ([
11

C]PIB uptake) results.   P values < 0.05 were considered statistically 

significant.  
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Results 

EAE disease progression 

 At the start of the experiment, the rhMOG/IFA and rhMOG/CFA group consisted of 5 

animals each, but 1 animal was excluded from each group. In the rhMOG/IFA group, animal 

M4 was excluded due to unexplained death 2 days after the baseline PET scan. In the 

rhMOG/CFA group, animal M9 was excluded because it died during the end of experiment PET 

acquisition (possibly associated to anesthesia). For the remaining animals, the EAE symptoms 

was 100% for both immunization methods.  

In general, immunization with rhMOG/IFA resulted in a less aggressive EAE model, as 

the first clinical symptoms started to appear later (101 ± 6 vs. 74 ± 18 days after the first 

immunization, P = 0.21) and more booster immunizations (2.75 ± 0.25 vs. 1.50 ± 0.50, P = 

0.066) were necessary, when compared to immunization with rhMOG/CFA. Body weight loss 

at the end of the experiment was significantly less after immunization with rhMOG/IFA than 

with rhMOG/CFA (9.2 ± 2.0% vs.17.4 ± 2.3%, P = 0.028), as is illustrated in figure 1. 
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FIGURE 1. Body weight changes and clinical scores of rhMOG/IFA and rhMOG/CFA induced 

EAE. Marmosets immunized with rhMOG/IFA (top) and with rhMOG/CFA (bottom). Arrows indicate 

booster immunizations, which happened every 4 weeks in animals without overt signs of EAE.   

 

PET imaging of demyelination 

 Representative [
11

C]PIB PET images are illustrated in figure 2. Statistical analysis 

revealed a main effect for time [F(1,6) = 16.556; P = 0.007] and VOIs [F(38,228) = 7.489; P = 

0.0001], but not for group [F(1,6) = 2.143; P = 0.194]. There were an interaction between VOIs 

and groups [F(38,228) = 1.657; P = 0.013], but not for time and groups [F(1,6) = 1.987; P = 

0.208], VOIs and time [F(38,228) = 1.086; P = 0.346], and VOIs, time and groups [F(38,228) = 

0.919; P = 0.610]. Multivariate test revealed a significant time effect on rhMOG/IFA group 

F(1,6) = 15.007; P=0.008], but not on rhMOG/CFA group [F(1,6) = 3.536; P=0.109].  

In the rhMOG/IFA group, the [
11

C]PIB uptake ratio was significantly reduced at the end 

of the study,  when compared to baseline in the whole brain (1.48 ± 0.03 vs. 1.25 ± 0.08, P = 

0.015), right body of corpus callosum (1.62 ± 0.05 vs. 1.07 ± 0.25, P = 0.024), right splenium of 

corpus callosum (1.72 ± 0.04 vs. 1.06 ± 0.22, P = 0.004), right hippocampus (1.49 ± 0.05 vs. 

1.21 ± 0.08, P = 0.036), right optic tract (1.56 ± 0.05 vs. 1.36 ± 0.10, P = 0.025), right thalamus 

(1.55 ± 0.04 vs. 1.33 ± 0.11, P = 0.041), right Globus pallidus (1.75 ± 0.08 vs. 1.35 ± 0.16, P = 

0.017), right head of caudate nucleus (1.55 ± 0.09 vs. 1.67 ± 0.20, P = 0.045),  right tail of 

caudate nucleus (1.76 ± 0.11 vs. 1.24 ± 0.15, P = 0.003), right putamen (1.66 ± 0.06 vs. 1.20 ± 

0.25, P = 0.047), left body of corpus callosum (1.58 ± 0.08 vs. 1.36 ± 0.04, P = 0.037) and left 

head of caudate nucleus (1.69 ± 0.05 vs. 1.30 ± 0.11, P = 0.023).  In the rhMOG/CFA group a 

significant decreased [
11

C]PIB uptake ratio was observed in the motor cortex in the left 

hemisphere (1.37 ± 0.05 vs. 1.24 ± 0.03, P = 0.011).    
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 FIGURE 2. [
11

C]PIB PET illustrative images of the end of experiment scans showing different regions 

of significantly decreased tracer uptake.  VOIs for quantification were drawn on a MRI template (upper 

row). Middle row, [
11

C]PIB PET images. Bottom row, [
11

C]PIB PET images fused with the MRI 

template.  A) rhMOG/IFA group and B) rhMOG/CFA group.  

 

 Although only some regions were statically significant in group comparisons it was 

possible to observe clear [
11

C]PIB uptake differences in several areas of the brain when looking 

individually to the animals (Figure 3 and Tables 1 and 2). 
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FIGURE 3. [
11

C]PIB PET uptake ratio of the baseline and end of the experiment scans in different brain 

areas of rhMOG/IFA group (A) and rhMOG/CFA group. Each graph represents one region with its 

respective name on the top. *P < 0.05, **P < 0.01. 
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TABLE 1: [
11

C]PIB uptake differences, presented as percentage, between baseline and end of experiment in the different brain areas of each animal of the rhMOG/IFA 

group. Arrows indicate either decreased uptake () or increased uptake (  ). Bold numbers indicate differences > 25%. 

 
IFA 

Volume of Interest 
(Antero-posterior coordinates relative to Bregma (16)) 

M1 (%) 

 

M2 (%) 

 

M3 (%) 

 

M5 (%) 

 

Whole brain (12.1  - 8.9) 21 20 18 0 

Brainstem (- 2.9  - 6.9) 21 28 21 11 

Cerebellum (- 6.2  - 10.9) 15 20 25 18 

  Right Left Right Left Right Left Right Left 

Anterior commissure (6.6 5.6) 4 22 4 8 8 22 0 11 

Body of corpus callosum (10.7 - 6.9) 5 24 79 3 16 9 5 18 

Cingulate cortex (10.7  4.9) 11 8 60 36 24 26 5 8 

Globus pallidus (4.1 1.4) 31 17 36 25 19 4 7 7 

Head of caudate nucleus (8.4 1.1) 19 34 60 1 4 27 8 1 

Hippocampus  (2.7 - 3.2 ) 33 24 4 23 25 12 11 6 

Internal capsule (9.4 1.1) 12 21 53 10 10 18  16 

Midbrain (0.4 - 4.4) 25 24 3 9 26 20 17 15 

Motor cortex (10.4  4.9) 2 11 83 10 2 2 4 1 

Optic tract (6.6 1.7 ) 26 30 8 10 16 31 2 8 

Primary somatosensory cortex (4.9 4.4) 15 6 88 17 10 5 6 2 

Putamen (8.4 1.4) 19 17 71  9  10  

Somatosensory association cortex (4.1 1.1) 4 2 87 2 20 26 4 21 

Splenium of corpus callosum (4.4 - 3.2) 32 24 74 35 28 10 21 20 

Subpial cortex (12.1 - 8.6) 13 6 68 27 13 12 6 2 

Tail of caudate nucleus (3.3 1.4) 35 34 48 21 20 29 15 11 

Thalamus (3.3 0.7) 20 28 29 17 11 12 2 8 

Visual cortex (- 6.2 - 10.9) 28 32 68 23 29 20 12 14 
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Table 2: [11
C]PIB uptake differences, presented as percentage, between baseline and end of experiment in the different brain areas of each animal of the rhMOG/CFA group. 

Arrows indicate either decreased uptake () or increased uptake (  ). Bold numbers indicate differences > 25%. 

 
CFA 

Volume of Interest 
(Antero-posterior coordinates relative to Bregma (16) ) 

M6 (%) 

 

M7 (%) 

 

M8 (%) 

 

M10 (%) 

 

Whole brain (12.1 - 8.9)  10  3  

Brainstem (- 2.9 - 6.9) 8    

Cerebellum (- 6.2 - 10.9)  2  8 

  Right Left Right Left Right Left Right Left 

Anterior commissure (6.6 5.6) 5  11  3 3 6 1 

Body of corpus callosum (10.7 - 6.9)   9 8    7 

Cingulate córtex (10.7 4.9)      0  6 

Globus pallidus (4.1 1.4) 9 10 3   3  14 

Head of caudate nucleus (8.4  1.1) 8 7 9     4 

Hippocampus (2.7 - 3.2)        34 

Internal capsule (9.4 1.1)  5  4 2   4 

Midbrain (0.4 - 4.4) 1  2  5   21 

Motor cortex (10.4 4.9) 10 2 4  2   10 

Optic tract (6.6  1.7) 10  4  1 5 2 11 

Primary somatosensory cortex (4.9 4.4)   0 3 6 2  21 

Putamen (8.4 1.4)     6    

Somatosensory association cortex (4.1 1.1) 2 2 3    2 2 

Splenium of corpus callosum (4.4 - 3.2)  20   5 11 18  

Subpial cortex (12.1 - 8.6 )         

Tail of caudate nucleus (3.3 1.4)       5 7 

Thalamus (3.3 0.7)    7     

Visual cortex (- 6.2 - 10.9)   4 13 7   27 
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In vitro assays  

 Autoradiography of brain sections showed lesions (decreased tracer uptake) in regions 

also identified by LFB histology (Figure 4).   

 

FIGURE 4. In vitro autoradiography illustrating demyelinated regions (arrows). A) Optic tract and B) 

Different regions of the corpus callosum and tail of caudate nucleus. R = right, L = left. 

 

Differences were found between rhMOG/IFA and rhMOG/CFA brain sections stained 

by LFB. More lesions were found in the rhMOG/IFA group compared to rhMOG/CFA group, 

which presented, in general, smaller and more sparse lesions. Figure 5 illustrates some found 

lesions by LFB histochemistry and figure 6 shows the correlation between [
11

C]PIB uptake and 

LFB histology for rhMOG/ IFA group (r
2
 0.32, P < 0.0001) and rhMOG/CFA group (r

2
 0.46, P 

< 0.0001).  

 

FIGURE 5. Demyelinated lesions identified by Luxol fast blue histochemistry. Arrows indicate the 

lesions sites. Motor cortex is represented in both hemisphere: right there is no lesion and left there is a 

demyelinated area.  Bar size = 500 µm  
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FIGURE 6. Correlation between [
11

C]PIB uptake ratio (end of experiment/baseline) and luxol fast blue 

histochemistry ratio (lesion/non lesion) in the same animal and same brain region. Each dot corresponds 

to a brain region from an individual animal (20 to 30 samples per animal). A) rhMOG/IFA group and B) 

rhMOG/CFA group. 

 

Discussion 

In this study, [
11

C]PIB PET identified demyelinated regions in different brain areas of 

marmoset models of progressive multiple sclerosis. Each animal presented a different disease 

course and lesion rate. Statically significant differences between baseline and end-of-treatment 

scans were observed in the cortical area of the rhMOG/CFA group, whereas significantly 

reduced tracer uptake was observed in white matter and grey matter regions in the rhMOG/IFA 

group. To our knowledge, this is the first in vivo PET imaging study to address demyelination 

detection in a non-human primate model of progressive MS, differentiating white and grey 

matter demyelination. 

Focal demyelinated plaques are not restricted to the white matter, but are also present in 

the cortex and deep grey matter nuclei. In fact, cortical lesions are more abundant in the 
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progressive stage of MS (20). However, it is difficult to identify grey matter lesions by a 

common clinical MRI techniques (1.5 T and 3.0 T) (21). Cortical lesions are more closely 

correlated to cognitive impairment than white matter lesions (22-25) and therefore, there is a 

need for an in vivo imaging techniques that can detect and monitor these grey matter lesions.  

The prof-of-concept study using [
11

C]PIB PET in MS patients (9) showed that this 

tracer can show demyelinated lesions in RRMS patients. A comparison between different 

myelin PET tracers in a MS animal model (10) showed that [
11

C]MeDAS performed better for 

myelin PET imaging then other tracers ([
11

C]PIB and [
11

C]CIC), however, this tracer has not 

been used in human so far. Since the goal of this study was to have potential translational results 

to MS patients, we have used [
11

C]PIB as the myelin PET tracer. Our data complement the 

Stankoff et al. study (9) showing the potential of [
11

C]PIB PET imaging to be used also in 

progressive MS.  

Demyelinated lesions are predominantly present in white matter when EAE is induced 

by IFA, whereas grey matter demyelination is more evident when the disease is induced by 

CFA in the EAE marmoset model (7). Our findings are in agreement with this data, since group 

analysis revealed statically significant reductions in [
11

C]PIB uptake in cortical area of the 

animals immunized by rhMOG/CFA and more significant white matter regions in the 

rhMOG/IFA group, although also in some deep grey matter nuclei. 

Although group significant changes in tracer uptake between baseline and end-of-

treatment scans were found in some regions on a group level, there was high variability between 

individual animals. Disease onset, EAE score, lesion rate and localization were different in each 

animal, independent of immunization protocol. This fact can be explained by the outbred 

characteristic of the non-human primate colonies, which have the intrinsic disadvantage of 

higher genetic variability and thus higher variability in the results than inbred strains. On the 

other hand, outbred colonies have the great advantage of better mimicking the MS disease in 

humans (26), having a higher potential for translation of the results. 
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Animals (M3 and M6) that presented paraplegia revealed several demyelinated regions 

by LFB histochemistry and a decrease in [
11

C]PIB uptake. However, such correspondence was 

not found for animals M1 and M7. Although M1 and M7 presented both with monoparesis, M1 

proved to have much more lesions by histology and also a stronger decrease in [
11

C]PIB uptake 

than M7. This may be explained by the immunization method, as rhMOG/CFA immunization 

causes a more aggressive inflammatory response than rhMOG/IFA, due to the presence of a 

mycobacterium particles in the emulsion (7). As a result, the high disease score of M7 may be 

more due to the inflammation process than demyelination. 

Two animals, M5 and M8, from the rhMOG/IFA and rhMOG/CFA group respectively, 

presented high body weight loss, but low disease score. Both animals had only slight changes in 

[
11

C]PIB uptake, which was in agreement with LFB histological findings. M8 actually showed a 

slight increase in [
11

C]PIB uptake in most brain regions, with the largest increase in the head of 

corpus callosum (15-20%).  

Animal M2 was the most interesting case. This animal had a disease score of only 0.5 

due to loss of appetite, but  showed a higher number of diffuse demyelinated areas in white and 

grey matter by LFB staining. [
11

C]PIB uptake was strongly decreased in several brain regions 

(over 80% in some regions, table 1) of the right brain hemisphere.  In contrast, several regions 

of the left brain hemisphere presented an increase in tracer uptake, suggesting some kind of 

compensation and/or brain plasticity.    

Another theory that might explain the increased [
11

C]PIB uptake in the left hemisphere 

of M2 and in most brain regions, including the corpus callosum, of M8 is the myelin basic 

protein (MBP) citrullination. MBP citrullination (i.e. modification of MBP protein-bound 

arginine to citrulline) is related to the immune response associated with myelin repair (27). An 

increase in citrulline in the brain of MS patients compared to controls was observed by magnetic 

resonance spectroscopy (28). If citrullination of MBP increases the [
11

C]PIB binding affinity, 
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tracer uptake would be higher in newly formed myelin. However, this hypothesis needs to be 

further investigated. 

The correlation between LBF histology and [
11

C]PIB uptake suggests that PET imaging 

might be a tool for in vivo disease progression monitoring. It is worth to mention that the 

observed correlation might be underestimated  due to  the spatial resolution of the preclinical 

PET scanner (1 mm) not being able to detect too small lesions. However, the optic tract is a 

very small structure and the uptake differences could be detected. A strong decrease in tracer 

uptake in this small structure was more evident in animal M1, in which the whole optic tract 

was demyelinated, whereas in animals M2, M3 and M6 only part of the optic tract was 

demyelinated. Trying to confirm the [
11

C]PIB specificity in this small region, we performed in 

vitro autoradiography on brain sections of the EAE marmosets. In fact autoradiography 

confirmed that [
11

C]PIB uptake was decreased in the partial demyelinated optic tract, thus 

supporting the evidence [
11

C]PIB could be a suitable tracer for identifying demyelination with 

PET.     

Methodological limitations of this study has also to be mentioned: 1) Static scans and 

tissue to muscle ratios, rather than dynamics imaging with pharmacokinetic modeling limit the 

quantitative information from the images; 2) VOIs drawn in whole brain regions instead of 

individual lesions causes, probably, an underestimation in the reduction of tracer uptake; 3) No 

brain MRI of each animal is available. 

Conclusion 

[
11

C]PIB PET was able to detect demyelinated lesions in grey and white matter in the 

EAE marmoset model. Our results warrant translation of this technique to application in 

humans, where it may be an useful tool for detecting demyelination in progressive multiple 

sclerosis, thus helping with disease progression monitoring and remyelinating therapy efficacy 

evaluation. 
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